X-Git-Url: https://pd.if.org/git/?a=blobdiff_plain;f=threads2j.c;fp=fosterbtreef2.c;h=d7cb99498cb37d383ed6494aa049337fb6522866;hb=42c2e785f24492e30f4262e7332bd41c7c672a56;hp=e4592d2d2611a5911fa4006ba67c0532d41db766;hpb=fe2ddf2193540d99fa9fb6ecf93beed5b66b8808;p=btree diff --git a/fosterbtreef2.c b/threads2j.c similarity index 73% rename from fosterbtreef2.c rename to threads2j.c index e4592d2..d7cb994 100644 --- a/fosterbtreef2.c +++ b/threads2j.c @@ -1,5 +1,5 @@ -// foster btree version f2 -// 18 JAN 2014 +// btree version threads2j linux futex concurrency version +// 24 JAN 2014 // author: karl malbrain, malbrain@cal.berkeley.edu @@ -25,6 +25,8 @@ REDISTRIBUTION OF THIS SOFTWARE. #ifdef linux #define _GNU_SOURCE +#include +#define SYS_futex 202 #endif #ifdef unix @@ -36,6 +38,7 @@ REDISTRIBUTION OF THIS SOFTWARE. #include #include #include +#include #else #define WIN32_LEAN_AND_MEAN #include @@ -74,7 +77,7 @@ There are five lock types for each node in three independent sets: 2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. -5. (set 3) ParentLock: Exclusive. Have parent adopt/delete maximum foster child from the node. +5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. */ typedef enum{ @@ -83,7 +86,33 @@ typedef enum{ BtLockRead, BtLockWrite, BtLockParent -}BtLock; +} BtLock; + +// mode & definition for latch implementation + +enum { + Mutex = 1 << 0, // the mutex bit + Write = 1 << 1, // the writers bit + Share = 1 << 2, // reader count + PendRd = 1 << 12, // reader contended count + PendWr = 1 << 22 // writer contended count +} LockMode; + +enum { + QueRd = 1, // reader queue + QueWr = 2 // writer queue +} RWQueue; + +// share is count of read accessors +// grant write lock when share == 0 + +typedef struct { + volatile uint mutex:1; // 1 = busy + volatile uint write:1; // 1 = exclusive + volatile uint share:10; // count of readers holding locks + volatile uint readwait:10; // count of readers waiting + volatile uint writewait:10; // count of writers waiting +} BtLatch; // Define the length of the page and key pointers @@ -121,50 +150,30 @@ typedef struct { // by the BtSlot array of keys. typedef struct Page { - volatile uint cnt; // count of keys in page - volatile uint act; // count of active keys - volatile uint min; // next key offset - volatile uint foster; // count of foster children + uint cnt; // count of keys in page + uint act; // count of active keys + uint min; // next key offset unsigned char bits; // page size in bits - unsigned char lvl:7; // level of page - unsigned char dirty:1; // page needs to be cleaned + unsigned char lvl:6; // level of page + unsigned char kill:1; // page is being deleted + unsigned char dirty:1; // page has deleted keys unsigned char right[BtId]; // page number to right } *BtPage; -// mode & definition for hash latch implementation - -enum { - Mutex = 1, - Write = 2, - Pending = 4, - Share = 8 -} LockMode; - -// mutex locks the other fields -// exclusive is set for write access -// share is count of read accessors - -typedef struct { - volatile ushort mutex:1; - volatile ushort exclusive:1; - volatile ushort pending:1; - volatile ushort share:13; -} BtSpinLatch; - // hash table entries typedef struct { - BtSpinLatch latch[1]; + BtLatch latch[1]; volatile ushort slot; // Latch table entry at head of chain } BtHashEntry; // latch manager table structure typedef struct { - BtSpinLatch readwr[1]; // read/write page lock - BtSpinLatch access[1]; // Access Intent/Page delete - BtSpinLatch parent[1]; // adoption of foster children - BtSpinLatch busy[1]; // slot is being moved between chains + BtLatch readwr[1]; // read/write page lock + BtLatch access[1]; // Access Intent/Page delete + BtLatch parent[1]; // adoption of foster children + BtLatch busy[1]; // slot is being moved between chains volatile ushort next; // next entry in hash table chain volatile ushort prev; // prev entry in hash table chain volatile ushort pin; // number of outstanding locks @@ -178,8 +187,8 @@ typedef struct { unsigned long long int lru; // number of times accessed uid basepage; // mapped base page number char *map; // mapped memory pointer - ushort pin; // mapped page pin counter ushort slot; // slot index in this array + ushort pin; // mapped page pin counter void *hashprev; // previous pool entry for the same hash idx void *hashnext; // next pool entry for the same hash idx #ifndef unix @@ -191,7 +200,7 @@ typedef struct { typedef struct { struct Page alloc[2]; // next & free page_nos in right ptr - BtSpinLatch lock[1]; // allocation area lite latch + BtLatch lock[1]; // allocation area lite latch ushort latchdeployed; // highest number of latch entries deployed ushort nlatchpage; // number of latch pages at BT_latch ushort latchtotal; // number of page latch entries @@ -208,19 +217,19 @@ typedef struct { uint seg_bits; // seg size in pages in bits uint mode; // read-write mode #ifdef unix - int idx; char *pooladvise; // bit maps for pool page advisements + int idx; #else HANDLE idx; #endif ushort poolcnt; // highest page pool node in use ushort poolmax; // highest page pool node allocated ushort poolmask; // total number of pages in mmap segment - 1 - ushort hashsize; // size of Hash Table for pool entries ushort evicted; // last evicted hash table slot - ushort *hash; // hash table of pool entries + ushort hashsize; // size of Hash Table for pool entries + ushort *hash; // pool index for hash entries BtPool *pool; // memory pool page segments - BtSpinLatch *latch; // latches for pool hash slots + BtLatch *latch; // latches for pool hash slots BtLatchMgr *latchmgr; // mapped latch page from allocation page BtLatchSet *latchsets; // mapped latch set from latch pages #ifndef unix @@ -232,11 +241,11 @@ typedef struct { BtMgr *mgr; // buffer manager for thread BtPage cursor; // cached frame for start/next (never mapped) BtPage frame; // spare frame for the page split (never mapped) - BtPage zero; // page frame for zeroes at end of file - BtPage page; // current page + BtPage zero; // page of zeroes to extend the file (never mapped) + BtPage page; // current page mapped from file uid page_no; // current page number uid cursor_page; // current cursor page number - BtLatchSet *set; // current page latch set + BtLatchSet *set; // current page latchset BtPool *pool; // current page pool unsigned char *mem; // frame, cursor, page memory buffer int found; // last delete was found @@ -257,8 +266,8 @@ typedef enum { // B-Tree functions extern void bt_close (BtDb *bt); extern BtDb *bt_open (BtMgr *mgr); -extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod, uint lvl); -extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len); +extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, uid id, uint tod); +extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl); extern uid bt_findkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_startkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_nextkey (BtDb *bt, uint slot); @@ -267,7 +276,7 @@ extern uint bt_nextkey (BtDb *bt, uint slot); extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolsize, uint segsize, uint hashsize); void bt_mgrclose (BtMgr *mgr); -// Helper functions to return cursor slot values +// Helper functions to return slot values extern BtKey bt_key (BtDb *bt, uint slot); extern uid bt_uid (BtDb *bt, uint slot); @@ -298,6 +307,10 @@ extern uint bt_tod (BtDb *bt, uint slot); // The first leaf page of level zero is always // located on page 2. +// The b-tree pages are linked with next +// pointers to facilitate enumerators, +// and provide for concurrency. + // When to root page fills, it is split in two and // the tree height is raised by a new root at page // one with two keys. @@ -306,20 +319,22 @@ extern uint bt_tod (BtDb *bt, uint slot); // page cleanup The fence key for a node is always // present, even after deletion and cleanup. -// Groups of pages called segments from the btree are -// cached with memory mapping. A hash table is used to keep +// Groups of pages called segments from the btree are optionally +// cached with a memory mapped pool. A hash table is used to keep // track of the cached segments. This behaviour is controlled // by the cache block size parameter to bt_open. // To achieve maximum concurrency one page is locked at a time -// as the tree is traversed to find leaf key in question. - -// An adoption traversal leaves the parent node locked as the -// tree is traversed to the level in quesiton. +// as the tree is traversed to find leaf key in question. The right +// page numbers are used in cases where the page is being split, +// or consolidated. // Page 0 is dedicated to lock for new page extensions, // and chains empty pages together for reuse. +// The ParentModification lock on a node is obtained to prevent resplitting +// or deleting a node before its fence is posted into its upper level. + // Empty pages are chained together through the ALLOC page and reused. // Access macros to address slot and key values from the page @@ -346,76 +361,83 @@ int i; return id; } +// Latch Manager + +int sys_futex(void *addr1, int op, int val1, struct timespec *timeout, void *addr2, int val3) +{ + return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3); +} + // wait until write lock mode is clear // and add 1 to the share count -void bt_spinreadlock(BtSpinLatch *latch) +void bt_spinreadlock(BtLatch *latch, int private) { -ushort prev; +uint prev; - do { -#ifdef unix - while( __sync_fetch_and_or((ushort *)latch, Mutex) & Mutex ) + if( private ) + private = FUTEX_PRIVATE_FLAG; + + while( 1 ) { + // obtain latch mutex + if( __sync_fetch_and_or((uint *)latch, Mutex) & Mutex ) { sched_yield(); -#else - while( _InterlockedOr16((ushort *)latch, Mutex) & Mutex ) - SwitchToThread(); -#endif + continue; + } - // see if exclusive request is granted or pending + // wait for writers to clear + // increment read waiters and wait - if( prev = !(latch->exclusive | latch->pending) ) -#ifdef unix - __sync_fetch_and_add((ushort *)latch, Share); -#else - _InterlockedExchangeAdd16 ((ushort *)latch, Share); -#endif + if( latch->write || latch->writewait ) { + __sync_fetch_and_add ((uint *)latch, PendRd); + prev = __sync_fetch_and_and ((uint *)latch, ~Mutex) & ~Mutex; + sys_futex( (uint *)latch, FUTEX_WAIT_BITSET | private, prev, NULL, NULL, QueRd ); + __sync_fetch_and_sub ((uint *)latch, PendRd); + continue; + } + + // increment reader lock count + // and release latch mutex -#ifdef unix - __sync_fetch_and_and ((ushort *)latch, ~Mutex); -#else - _InterlockedAnd16((ushort *)latch, ~Mutex); -#endif - if( prev ) - return; -#ifdef unix - } while( sched_yield(), 1 ); -#else - } while( SwitchToThread(), 1 ); -#endif + __sync_fetch_and_add ((uint *)latch, Share); + __sync_fetch_and_and ((uint *)latch, ~Mutex); + return; + } } // wait for other read and write latches to relinquish -void bt_spinwritelock(BtSpinLatch *latch) +void bt_spinwritelock(BtLatch *latch, int private) { - do { -#ifdef unix - while( __sync_fetch_and_or((ushort *)latch, Mutex | Pending) & Mutex ) +uint prev; + + if( private ) + private = FUTEX_PRIVATE_FLAG; + + while( 1 ) { + // obtain latch mutex + if( __sync_fetch_and_or((uint *)latch, Mutex) & Mutex ) { sched_yield(); -#else - while( _InterlockedOr16((ushort *)latch, Mutex | Pending) & Mutex ) - SwitchToThread(); -#endif - if( !(latch->share | latch->exclusive) ) { -#ifdef unix - __sync_fetch_and_or((ushort *)latch, Write); - __sync_fetch_and_and ((ushort *)latch, ~(Mutex | Pending)); -#else - _InterlockedOr16((ushort *)latch, Write); - _InterlockedAnd16((ushort *)latch, ~(Mutex | Pending)); -#endif - return; + continue; } -#ifdef unix - __sync_fetch_and_and ((ushort *)latch, ~Mutex); - sched_yield(); -#else - _InterlockedAnd16((ushort *)latch, ~Mutex); - SwitchToThread(); -#endif - } while( 1 ); + // wait for write and reader count to clear + + if( latch->write || latch->share ) { + __sync_fetch_and_add ((uint *)latch, PendWr); + prev = __sync_fetch_and_and ((uint *)latch, ~Mutex) & ~Mutex; + sys_futex( (uint *)latch, FUTEX_WAIT_BITSET | private, prev, NULL, NULL, QueWr ); + __sync_fetch_and_sub ((uint *)latch, PendWr); + continue; + } + + // take write mutex + // release latch mutex + + __sync_fetch_and_or ((uint *)latch, Write); + __sync_fetch_and_and ((uint *)latch, ~Mutex); + return; + } } // try to obtain write lock @@ -423,54 +445,81 @@ void bt_spinwritelock(BtSpinLatch *latch) // return 1 if obtained, // 0 otherwise -int bt_spinwritetry(BtSpinLatch *latch) +int bt_spinwritetry(BtLatch *latch) { -ushort prev; +int ans; -#ifdef unix - if( prev = __sync_fetch_and_or((ushort *)latch, Mutex), prev & Mutex ) - return 0; -#else - if( prev = _InterlockedOr16((ushort *)latch, Mutex), prev & Mutex ) + // try for mutex, + // abandon request if not taken + + if( __sync_fetch_and_or((uint *)latch, Mutex) & Mutex ) return 0; -#endif - // take write access if all bits are clear - if( !prev ) -#ifdef unix - __sync_fetch_and_or ((ushort *)latch, Write); -#else - _InterlockedOr16((ushort *)latch, Write); -#endif + // see if write mode is available -#ifdef unix - __sync_fetch_and_and ((ushort *)latch, ~Mutex); -#else - _InterlockedAnd16((ushort *)latch, ~Mutex); -#endif - return !prev; + if( !latch->write && !latch->share ) { + __sync_fetch_and_or ((uint *)latch, Write); + ans = 1; + } else + ans = 0; + + // release latch mutex + + __sync_fetch_and_and ((uint *)latch, ~Mutex); + return ans; } -// clear write mode +// clear write lock -void bt_spinreleasewrite(BtSpinLatch *latch) +void bt_spinreleasewrite(BtLatch *latch, int private) { -#ifdef unix - __sync_fetch_and_and ((ushort *)latch, ~Write); -#else - _InterlockedAnd16((ushort *)latch, ~Write); -#endif + if( private ) + private = FUTEX_PRIVATE_FLAG; + + // obtain latch mutex + + while( __sync_fetch_and_or((uint *)latch, Mutex) & Mutex ) + sched_yield(); + + __sync_fetch_and_and ((uint *)latch, ~Write); + + // favor writers + + if( latch->writewait ) + if( sys_futex( (uint *)latch, FUTEX_WAKE_BITSET | private, 1, NULL, NULL, QueWr ) ) + goto wakexit; + + if( latch->readwait ) + sys_futex( (uint *)latch, FUTEX_WAKE_BITSET | private, INT_MAX, NULL, NULL, QueRd ); + + // release latch mutex + +wakexit: + __sync_fetch_and_and ((uint *)latch, ~Mutex); } // decrement reader count -void bt_spinreleaseread(BtSpinLatch *latch) +void bt_spinreleaseread(BtLatch *latch, int private) { -#ifdef unix - __sync_fetch_and_add((ushort *)latch, -Share); -#else - _InterlockedExchangeAdd16 ((ushort *)latch, -Share); -#endif + if( private ) + private = FUTEX_PRIVATE_FLAG; + + // obtain latch mutex + + while( __sync_fetch_and_or((uint *)latch, Mutex) & Mutex ) + sched_yield(); + + __sync_fetch_and_sub ((uint *)latch, Share); + + // wake waiting writers + + if( !latch->share && latch->writewait ) + sys_futex( (uint *)latch, FUTEX_WAKE_BITSET | private, 1, NULL, NULL, QueWr ); + + // release latch mutex + + __sync_fetch_and_and ((uint *)latch, ~Mutex); } // link latch table entry into latch hash table @@ -510,7 +559,7 @@ BtLatchSet *set; // obtain read lock on hash table entry - bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch); + bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch, 0); if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do { @@ -527,14 +576,14 @@ BtLatchSet *set; #endif } - bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch); + bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch, 0); if( slot ) return set; // try again, this time with write lock - bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch); + bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch, 0); if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do { @@ -555,7 +604,7 @@ BtLatchSet *set; _InterlockedIncrement16 (&set->pin); #endif set->page_no = page_no; - bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch); + bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch, 0); return set; } @@ -574,7 +623,7 @@ BtLatchSet *set; _InterlockedIncrement16 (&set->pin); #endif bt_latchlink (bt, hashidx, victim, page_no); - bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch); + bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch, 0); return set; } @@ -611,13 +660,13 @@ BtLatchSet *set; // or has outstanding locks if( !bt_spinwritetry (bt->mgr->latchmgr->table[idx].latch) ) { - bt_spinreleasewrite (set->busy); + bt_spinreleasewrite (set->busy, 0); continue; } if( set->pin ) { - bt_spinreleasewrite (set->busy); - bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch); + bt_spinreleasewrite (set->busy, 0); + bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch, 0); continue; } @@ -631,15 +680,15 @@ BtLatchSet *set; if( set->next ) bt->mgr->latchsets[set->next].prev = set->prev; - bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch); + bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch, 0); #ifdef unix __sync_fetch_and_add(&set->pin, 1); #else _InterlockedIncrement16 (&set->pin); #endif bt_latchlink (bt, hashidx, victim, page_no); - bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch); - bt_spinreleasewrite (set->busy); + bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch, 0); + bt_spinreleasewrite (set->busy, 0); return set; } } @@ -668,7 +717,7 @@ uint slot; #ifdef unix munmap (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size); - munmap (mgr->latchmgr, mgr->page_size); + munmap (mgr->latchmgr, mgr->page_size); #else FlushViewOfFile(mgr->latchmgr, 0); UnmapViewOfFile(mgr->latchmgr); @@ -720,7 +769,6 @@ uint amt[1]; BtMgr* mgr; BtKey key; int flag; - #ifndef unix SYSTEM_INFO sysinfo[1]; #endif @@ -737,7 +785,6 @@ SYSTEM_INFO sysinfo[1]; #ifdef unix mgr = calloc (1, sizeof(BtMgr)); - mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); if( mgr->idx == -1 ) @@ -770,7 +817,7 @@ SYSTEM_INFO sysinfo[1]; else return free(mgr), free(latchmgr), NULL; } else if( mode == BT_ro ) - return free(latchmgr), bt_mgrclose (mgr), NULL; + return free(latchmgr), free (mgr), NULL; #else latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE); size = GetFileSize(mgr->idx, amt); @@ -811,12 +858,12 @@ SYSTEM_INFO sysinfo[1]; #ifdef unix mgr->pool = calloc (poolmax, sizeof(BtPool)); mgr->hash = calloc (hashsize, sizeof(ushort)); - mgr->latch = calloc (hashsize, sizeof(BtSpinLatch)); + mgr->latch = calloc (hashsize, sizeof(BtLatch)); mgr->pooladvise = calloc (poolmax, (mgr->poolmask + 8) / 8); #else mgr->pool = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, poolmax * sizeof(BtPool)); mgr->hash = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort)); - mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtSpinLatch)); + mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtLatch)); #endif if( size || *amt ) @@ -900,6 +947,27 @@ SYSTEM_INFO sysinfo[1]; last++; } + // create empty page area by writing last page of first + // segment area (other pages are zeroed by O/S) + + if( mgr->poolmask ) { + memset(latchmgr, 0, mgr->page_size); + last = mgr->poolmask; + + while( last < MIN_lvl + 1 ) + last += mgr->poolmask + 1; + +#ifdef unix + pwrite(mgr->idx, latchmgr, mgr->page_size, last << mgr->page_bits); +#else + SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN); + if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + if( *amt < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#endif + } + mgrlatch: #ifdef unix flag = PROT_READ | PROT_WRITE; @@ -949,7 +1017,7 @@ BtDb *bt = malloc (sizeof(*bt)); bt->zero = (BtPage)(bt->mem + 1 * mgr->page_size); bt->cursor = (BtPage)(bt->mem + 2 * mgr->page_size); - memset(bt->zero, 0, mgr->page_size); + memset (bt->zero, 0, mgr->page_size); return bt; } @@ -1034,7 +1102,7 @@ BtPool *pool = NULL, *node; node = bt->mgr->pool + hashslot; - // scan pool entries under hash table slot + // scan pool entries under hash table slot do { if( node->pin ) @@ -1061,6 +1129,7 @@ int flag; pool->map = mmap (0, (bt->mgr->poolmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off); if( pool->map == MAP_FAILED ) return bt->err = BTERR_map; + // clear out madvise issued bits memset (bt->mgr->pooladvise + pool->slot * ((bt->mgr->poolmask + 8) / 8), 0, (bt->mgr->poolmask + 8)/8); #else @@ -1117,12 +1186,11 @@ BtPool *bt_pinpool(BtDb *bt, uid page_no) { BtPool *pool, *node, *next; uint slot, idx, victim; -BtLatchSet *set; // lock hash table chain idx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize; - bt_spinreadlock (&bt->mgr->latch[idx]); + bt_spinreadlock (&bt->mgr->latch[idx], 1); // look up in hash table @@ -1132,15 +1200,15 @@ BtLatchSet *set; #else _InterlockedIncrement16 (&pool->pin); #endif - bt_spinreleaseread (&bt->mgr->latch[idx]); + bt_spinreleaseread (&bt->mgr->latch[idx], 1); pool->lru++; return pool; } // upgrade to write lock - bt_spinreleaseread (&bt->mgr->latch[idx]); - bt_spinwritelock (&bt->mgr->latch[idx]); + bt_spinreleaseread (&bt->mgr->latch[idx], 1); + bt_spinwritelock (&bt->mgr->latch[idx], 1); // try to find page in pool with write lock @@ -1150,7 +1218,7 @@ BtLatchSet *set; #else _InterlockedIncrement16 (&pool->pin); #endif - bt_spinreleasewrite (&bt->mgr->latch[idx]); + bt_spinreleasewrite (&bt->mgr->latch[idx], 1); pool->lru++; return pool; } @@ -1177,7 +1245,7 @@ BtLatchSet *set; #else _InterlockedIncrement16 (&pool->pin); #endif - bt_spinreleasewrite (&bt->mgr->latch[idx]); + bt_spinreleasewrite (&bt->mgr->latch[idx], 1); return pool; } @@ -1204,12 +1272,12 @@ BtLatchSet *set; if( !bt_spinwritetry (&bt->mgr->latch[victim]) ) continue; - // if cache entry is empty - // or no slots are unpinned + // if pool entry is empty + // or any pages are pinned // skip this entry if( !(pool = bt_findlru(bt, bt->mgr->hash[victim])) ) { - bt_spinreleasewrite (&bt->mgr->latch[victim]); + bt_spinreleasewrite (&bt->mgr->latch[victim], 1); continue; } @@ -1225,7 +1293,7 @@ BtLatchSet *set; if( node = pool->hashnext ) node->hashprev = pool->hashprev; - bt_spinreleasewrite (&bt->mgr->latch[victim]); + bt_spinreleasewrite (&bt->mgr->latch[victim], 1); // remove old file mapping #ifdef unix @@ -1249,54 +1317,54 @@ BtLatchSet *set; #else _InterlockedIncrement16 (&pool->pin); #endif - bt_spinreleasewrite (&bt->mgr->latch[idx]); + bt_spinreleasewrite (&bt->mgr->latch[idx], 1); return pool; } } // place write, read, or parent lock on requested page_no. -// pin to buffer pool and return latchset pointer +// pin to buffer pool and return page pointer void bt_lockpage(BtLock mode, BtLatchSet *set) { switch( mode ) { case BtLockRead: - bt_spinreadlock (set->readwr); + bt_spinreadlock (set->readwr, 0); break; case BtLockWrite: - bt_spinwritelock (set->readwr); + bt_spinwritelock (set->readwr, 0); break; case BtLockAccess: - bt_spinreadlock (set->access); + bt_spinreadlock (set->access, 0); break; case BtLockDelete: - bt_spinwritelock (set->access); + bt_spinwritelock (set->access, 0); break; case BtLockParent: - bt_spinwritelock (set->parent); + bt_spinwritelock (set->parent, 0); break; } } -// remove write, read, or parent lock on requested page_no. +// remove write, read, or parent lock on requested page void bt_unlockpage(BtLock mode, BtLatchSet *set) { switch( mode ) { case BtLockRead: - bt_spinreleaseread (set->readwr); + bt_spinreleaseread (set->readwr, 0); break; case BtLockWrite: - bt_spinreleasewrite (set->readwr); + bt_spinreleasewrite (set->readwr, 0); break; case BtLockAccess: - bt_spinreleaseread (set->access); + bt_spinreleaseread (set->access, 0); break; case BtLockDelete: - bt_spinreleasewrite (set->access); + bt_spinreleasewrite (set->access, 0); break; case BtLockParent: - bt_spinreleasewrite (set->parent); + bt_spinreleasewrite (set->parent, 0); break; } } @@ -1313,7 +1381,7 @@ int reuse; // lock allocation page - bt_spinwritelock(bt->mgr->latchmgr->lock); + bt_spinwritelock(bt->mgr->latchmgr->lock, 0); // use empty chain first // else allocate empty page @@ -1332,30 +1400,21 @@ int reuse; reuse = 0; } #ifdef unix + if ( pwrite(bt->mgr->idx, page, bt->mgr->page_size, new_page << bt->mgr->page_bits) < bt->mgr->page_size ) + return bt->err = BTERR_wrt, 0; + // if writing first page of pool block, zero last page in the block if ( !reuse && bt->mgr->poolmask > 0 && (new_page & bt->mgr->poolmask) == 0 ) { // use zero buffer to write zeros + memset(bt->zero, 0, bt->mgr->page_size); if ( pwrite(bt->mgr->idx,bt->zero, bt->mgr->page_size, (new_page | bt->mgr->poolmask) << bt->mgr->page_bits) < bt->mgr->page_size ) return bt->err = BTERR_wrt, 0; } - - // unlock allocation latch - - bt_spinreleasewrite(bt->mgr->latchmgr->lock); - - if ( pwrite(bt->mgr->idx, page, bt->mgr->page_size, new_page << bt->mgr->page_bits) < bt->mgr->page_size ) - return bt->err = BTERR_wrt, 0; - #else - // unlock allocation latch - - bt_spinreleasewrite(bt->mgr->latchmgr->lock); - // bring new page into pool and copy page. // this will extend the file into the new pages. - // NB -- no latch required if( pool = bt_pinpool (bt, new_page) ) pmap = bt_page (bt, pool, new_page); @@ -1365,6 +1424,9 @@ int reuse; memcpy(pmap, page, bt->mgr->page_size); bt_unpinpool (pool); #endif + // unlock allocation latch and return new page no + + bt_spinreleasewrite(bt->mgr->latchmgr->lock, 0); return new_page; } @@ -1373,8 +1435,16 @@ int reuse; int bt_findslot (BtDb *bt, unsigned char *key, uint len) { uint diff, higher = bt->page->cnt, low = 1, slot; +uint good = 0; + + // make stopper key an infinite fence value - // low is the lowest candidate, higher is already + if( bt_getid (bt->page->right) ) + higher++; + else + good++; + + // low is the next candidate, higher is already // tested as .ge. the given key, loop ends when they meet while( diff = higher - low ) { @@ -1382,16 +1452,18 @@ uint diff, higher = bt->page->cnt, low = 1, slot; if( keycmp (keyptr(bt->page, slot), key, len) < 0 ) low = slot + 1; else - higher = slot; + higher = slot, good++; } - return higher; + // return zero if key is on right link page + + return good ? higher : 0; } // find and load page at given level for given key // leave page rd or wr locked as requested -int bt_loadpage (BtDb *bt, unsigned char *key, uint len, uint lvl, BtLock lock) +int bt_loadpage (BtDb *bt, unsigned char *key, uint len, uint lvl, uint lock) { uid page_no = ROOT_page, prevpage = 0; BtLatchSet *set, *prevset; @@ -1401,12 +1473,12 @@ BtPool *prevpool; // start at root of btree and drill down + bt->set = NULL; + do { // determine lock mode of drill level mode = (lock == BtLockWrite) && (drill == lvl) ? BtLockWrite : BtLockRead; - // obtain latch set for this page - bt->set = bt_pinlatch (bt, page_no); bt->page_no = page_no; @@ -1422,7 +1494,7 @@ BtPool *prevpool; if( page_no > ROOT_page ) bt_lockpage(BtLockAccess, bt->set); - // now unlock and unpin our (possibly foster) parent + // release & unpin parent page if( prevpage ) { bt_unlockpage(prevmode, prevset); @@ -1440,184 +1512,113 @@ BtPool *prevpool; // re-read and re-lock root after determining actual level of root - if( page_no == ROOT_page ) - if( bt->page->lvl != drill) { + if( bt->page->lvl != drill) { + if ( bt->page_no != ROOT_page ) + return bt->err = BTERR_struct, 0; + drill = bt->page->lvl; - if( lock == BtLockWrite && drill == lvl ) { + if( lock == BtLockWrite && drill == lvl ) { bt_unlockpage(mode, bt->set); bt_unpinlatch (bt->set); bt_unpinpool (bt->pool); continue; } - } - - prevpage = bt->page_no; - prevpool = bt->pool; - prevset = bt->set; - prevmode = mode; + } // find key on page at this level - // and either descend to requested level - // or return key slot - - slot = bt_findslot (bt, key, len); + // and descend to requested level - // is this slot < foster child area - // on the requested level? - - // if so, return actual slot even if dead - - if( slot <= bt->page->cnt - bt->page->foster ) + if( !bt->page->kill && (slot = bt_findslot (bt, key, len)) ) { if( drill == lvl ) return slot; - // find next active slot - - // note: foster children are never dead - // nor fence keys for interiour nodes - - while( slotptr(bt->page, slot)->dead ) - if( slot++ < bt->page->cnt ) - continue; - else - return bt->err = BTERR_struct, 0; // last key shouldn't be deleted + while( slotptr(bt->page, slot)->dead ) + if( slot++ < bt->page->cnt ) + continue; + else { + page_no = bt_getid(bt->page->right); + goto slideright; + } - // is this slot < foster child area - // if so, drill to next level + page_no = bt_getid(slotptr(bt->page, slot)->id); + drill--; + } - if( slot <= bt->page->cnt - bt->page->foster ) - drill--; + // or slide right into next page + // (slide left from deleted page) - // continue right onto foster child - // or down to next level. + else + page_no = bt_getid(bt->page->right); - page_no = bt_getid(slotptr(bt->page, slot)->id); + // continue down / right using overlapping locks + // to protect pages being killed or split. +slideright: + prevpage = bt->page_no; + prevpool = bt->pool; + prevset = bt->set; + prevmode = mode; } while( page_no ); - // return error on end of chain + // return error on end of right chain bt->err = BTERR_struct; return 0; // return error } // find and delete key on page by marking delete flag bit -// when leaf page becomes empty, delete it from the btree +// when page becomes empty, delete it -BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len) +BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl) { -unsigned char leftkey[256]; +unsigned char lowerkey[256], higherkey[256]; BtLatchSet *rset, *set; BtPool *pool, *rpool; -BtPage rpage, page; uid page_no, right; uint slot, tod; +BtPage rpage; BtKey ptr; - if( slot = bt_loadpage (bt, key, len, 0, BtLockWrite) ) + if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) ptr = keyptr(bt->page, slot); else return bt->err; // if key is found delete it, otherwise ignore request - // note that fence keys of interiour nodes are not deleted. if( bt->found = !keycmp (ptr, key, len) ) if( bt->found = slotptr(bt->page, slot)->dead == 0 ) { - slotptr(bt->page,slot)->dead = 1; + slotptr(bt->page,slot)->dead = 1; if( slot < bt->page->cnt ) - bt->page->dirty = 1; - bt->page->act--; + bt->page->dirty = 1; + bt->page->act--; } + // return if page is not empty, or it has no right sibling + + right = bt_getid(bt->page->right); page_no = bt->page_no; pool = bt->pool; - page = bt->page; set = bt->set; - // return if page is not empty or not found - - if( page->act || !bt->found ) { + if( !right || bt->page->act ) { bt_unlockpage(BtLockWrite, set); bt_unpinlatch (set); bt_unpinpool (pool); return bt->err; } - // cache copy of fence key of empty node - - ptr = keyptr(page, page->cnt); - memcpy(leftkey, ptr, ptr->len + 1); + // obtain Parent lock over write lock - // release write lock on empty node - // obtain Parent lock - - bt_unlockpage(BtLockWrite, set); bt_lockpage(BtLockParent, set); - // load and lock parent to see - // if delete of empty node is OK - // ie, not a fence key of parent - - while( 1 ) { - if( slot = bt_loadpage (bt, leftkey+1, *leftkey, 1, BtLockWrite) ) - ptr = keyptr(bt->page, slot); - else - return bt->err; - - // does parent level contain our fence key yet? - // and is it free of foster children? - - if( !bt->page->foster ) - if( !keycmp (ptr, leftkey+1, *leftkey) ) - break; - - bt_unlockpage(BtLockWrite, bt->set); - bt_unpinlatch (bt->set); - bt_unpinpool (bt->pool); -#ifdef unix - sched_yield(); -#else - SwitchToThread(); -#endif - } - - // find our left fence key - - while( slotptr(bt->page, slot)->dead ) - if( slot++ < bt->page->cnt ) - continue; - else - return bt->err = BTERR_struct; // last key shouldn't be deleted - - // now we have both parent and child - - bt_lockpage(BtLockDelete, set); - bt_lockpage(BtLockWrite, set); + // keep copy of key to delete - // return if page has no right sibling within parent - // or if empty node is no longer empty - - if( page->act || slot == bt->page->cnt ) { - // unpin parent - bt_unlockpage(BtLockWrite, bt->set); - bt_unpinlatch (bt->set); - bt_unpinpool (bt->pool); - // unpin empty node - bt_unlockpage(BtLockParent, set); - bt_unlockpage(BtLockDelete, set); - bt_unlockpage(BtLockWrite, set); - bt_unpinlatch (set); - bt_unpinpool (pool); - return bt->err; - } + ptr = keyptr(bt->page, bt->page->cnt); + memcpy(lowerkey, ptr, ptr->len + 1); - // lock and map our right page - // note that it cannot be our foster child - // since the our node is empty - - right = bt_getid(page->right); + // lock and map right page if( rpool = bt_pinpool (bt, right) ) rpage = bt_page (bt, rpool, right); @@ -1626,37 +1627,42 @@ BtKey ptr; rset = bt_pinlatch (bt, right); bt_lockpage(BtLockWrite, rset); - bt_lockpage(BtLockDelete, rset); - - // pull contents of right page into empty page - memcpy (page, rpage, bt->mgr->page_size); + // pull contents of next page into current empty page - // delete left parent slot for old empty page - // and redirect right parent slot to it + memcpy (bt->page, rpage, bt->mgr->page_size); - bt->page->act--; - bt->page->dirty = 1; - slotptr(bt->page, slot)->dead = 1; + // keep copy of key to update - while( slot++ < bt->page->cnt ) - if( !slotptr(bt->page, slot)->dead ) - break; + ptr = keyptr(rpage, rpage->cnt); + memcpy(higherkey, ptr, ptr->len + 1); - bt_putid(slotptr(bt->page,slot)->id, page_no); + // Mark right page as deleted and point it to left page + // until we can post updates at higher level. - // release parent level lock - // and our empty node lock + bt_putid(rpage->right, page_no); + rpage->kill = 1; + rpage->cnt = 0; + bt_unlockpage(BtLockWrite, rset); bt_unlockpage(BtLockWrite, set); - bt_unlockpage(BtLockWrite, bt->set); - bt_unpinlatch (bt->set); - bt_unpinpool (bt->pool); + + // delete old lower key to consolidated node + + if( bt_deletekey (bt, lowerkey + 1, *lowerkey, lvl + 1) ) + return bt->err; + + // redirect higher key directly to consolidated node + + tod = (uint)time(NULL); + + if( bt_insertkey (bt, higherkey+1, *higherkey, lvl + 1, page_no, tod) ) + return bt->err; // add killed right block to free chain // lock latch mgr - bt_spinwritelock(bt->mgr->latchmgr->lock); + bt_spinwritelock(bt->mgr->latchmgr->lock, 0); // store free chain in allocation page second right bt_putid(rpage->right, bt_getid(bt->mgr->latchmgr->alloc[1].right)); @@ -1664,7 +1670,7 @@ BtKey ptr; // unlock latch mgr and right page - bt_spinreleasewrite(bt->mgr->latchmgr->lock); + bt_spinreleasewrite(bt->mgr->latchmgr->lock, 0); bt_unlockpage(BtLockWrite, rset); bt_unlockpage(BtLockDelete, rset); @@ -1674,11 +1680,10 @@ BtKey ptr; // remove ParentModify lock bt_unlockpage(BtLockParent, set); - bt_unlockpage(BtLockDelete, set); bt_unpinlatch (set); bt_unpinpool (pool); return 0; -} +} // find key in leaf level and return row-id @@ -1696,7 +1701,7 @@ uid id; // if key exists, return row-id // otherwise return 0 - if( slot <= bt->page->cnt && !keycmp (ptr, key, len) ) + if( ptr->len == len && !memcmp (ptr->key, key, len) ) id = bt_getid(slotptr(bt->page,slot)->id); else id = 0; @@ -1709,8 +1714,8 @@ uid id; // check page for space available, // clean if necessary and return -// 0 - page needs splitting -// >0 new slot value +// =0 - page needs splitting +// >0 - go ahead at returned slot uint bt_cleanpage(BtDb *bt, uint amt, uint slot) { @@ -1737,13 +1742,7 @@ BtKey key; page->dirty = 0; page->act = 0; - // try cleaning up page first - - // always leave fence key in the array - // otherwise, remove deleted key - - // note: foster children are never dead - // nor are fence keys for interiour nodes + // always leave fence key in list while( cnt++ < max ) { if( cnt == slot ) @@ -1752,7 +1751,6 @@ BtKey key; continue; // copy key - key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); @@ -1764,108 +1762,48 @@ BtKey key; slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; } - page->min = nxt; page->cnt = idx; - // see if page has enough space now, or does it need splitting? - if( page->min >= (idx+1) * sizeof(BtSlot) + sizeof(*page) + amt + 1 ) return newslot; return 0; } -// add key to current page -// page must already be writelocked - -void bt_addkeytopage (BtDb *bt, uint slot, unsigned char *key, uint len, uid id, uint tod) -{ -BtPage page = bt->page; -uint idx; - - // find next available dead slot and copy key onto page - // note that foster children on the page are never dead - - // look for next hole, but stay back from the fence key - - for( idx = slot; idx < page->cnt; idx++ ) - if( slotptr(page, idx)->dead ) - break; - - if( idx == page->cnt ) - idx++, page->cnt++; - - page->act++; - - // now insert key into array before slot - - while( idx > slot ) - *slotptr(page, idx) = *slotptr(page, idx -1), idx--; - - page->min -= len + 1; - ((unsigned char *)page)[page->min] = len; - memcpy ((unsigned char *)page + page->min +1, key, len ); - - bt_putid(slotptr(page,slot)->id, id); - slotptr(page, slot)->off = page->min; - slotptr(page, slot)->tod = tod; - slotptr(page, slot)->dead = 0; -} - // split the root and raise the height of the btree -// call with current page locked and page no of foster child -// return with current page (root) unlocked -BTERR bt_splitroot(BtDb *bt, uid right) +BTERR bt_splitroot(BtDb *bt, unsigned char *newkey, unsigned char *oldkey, uid page_no2) { uint nxt = bt->mgr->page_size; -unsigned char fencekey[256]; BtPage root = bt->page; uid new_page; -BtKey key; - // Obtain an empty page to use, and copy the left page - // contents into it from the root. Strip foster child key. - // (it's the stopper key) - - memset (slotptr(root, root->cnt), 0, sizeof(BtSlot)); - root->dirty = 1; - root->foster--; - root->act--; - root->cnt--; - - // Save left fence key. - - key = keyptr(root, root->cnt); - memcpy (fencekey, key, key->len + 1); - - // copy the lower keys into a new left page + // Obtain an empty page to use, and copy the current + // root contents into it which is the lower half of + // the old root. if( !(new_page = bt_newpage(bt, root)) ) return bt->err; // preserve the page info at the bottom - // and set rest of the root to zero + // and set rest to zero - memset (root+1, 0, bt->mgr->page_size - sizeof(*root)); + memset(root+1, 0, bt->mgr->page_size - sizeof(*root)); - // insert left fence key on empty newroot page + // insert first key on newroot page - nxt -= *fencekey + 1; - memcpy ((unsigned char *)root + nxt, fencekey, *fencekey + 1); + nxt -= *newkey + 1; + memcpy ((unsigned char *)root + nxt, newkey, *newkey + 1); bt_putid(slotptr(root, 1)->id, new_page); slotptr(root, 1)->off = nxt; - // insert stopper key on newroot page + // insert second key on newroot page // and increase the root height - nxt -= 3; - fencekey[0] = 2; - fencekey[1] = 0xff; - fencekey[2] = 0xff; - memcpy ((unsigned char *)root + nxt, fencekey, *fencekey + 1); - bt_putid(slotptr(root, 2)->id, right); + nxt -= *oldkey + 1; + memcpy ((unsigned char *)root + nxt, oldkey, *oldkey + 1); + bt_putid(slotptr(root, 2)->id, page_no2); slotptr(root, 2)->off = nxt; bt_putid(root->right, 0); @@ -1883,34 +1821,31 @@ BtKey key; } // split already locked full node -// in current page variables -// return unlocked and unpinned. +// return unlocked. BTERR bt_splitpage (BtDb *bt) { -uint slot, cnt, idx, max, nxt = bt->mgr->page_size; -unsigned char fencekey[256]; -uid page_no = bt->page_no; -BtLatchSet *set = bt->set; +uint cnt = 0, idx = 0, max, nxt = bt->mgr->page_size; +unsigned char oldkey[256], lowerkey[256]; +uid page_no = bt->page_no, right; +BtLatchSet *nset, *set = bt->set; BtPool *pool = bt->pool; BtPage page = bt->page; -uint tod = time(NULL); uint lvl = page->lvl; -uid new_page, right; +uid new_page; BtKey key; +uint tod; - // initialize frame buffer for right node + // split higher half of keys to bt->frame + // the last key (fence key) might be dead - memset (bt->frame, 0, bt->mgr->page_size); - max = page->cnt - page->foster; tod = (uint)time(NULL); + + memset (bt->frame, 0, bt->mgr->page_size); + max = (int)page->cnt; cnt = max / 2; idx = 0; - // split higher half of keys to bt->frame - // leaving old foster children in the left node, - // and adding a new foster child there. - while( cnt++ < max ) { key = keyptr(page, cnt); nxt -= key->len + 1; @@ -1922,196 +1857,165 @@ BtKey key; slotptr(bt->frame, idx)->off = nxt; } - // transfer right link node to new right node + // remember existing fence key for new page to the right - if( page_no > ROOT_page ) { - right = bt_getid (page->right); - bt_putid(bt->frame->right, right); - } + memcpy (oldkey, key, key->len + 1); bt->frame->bits = bt->mgr->page_bits; bt->frame->min = nxt; bt->frame->cnt = idx; bt->frame->lvl = lvl; - // get new free page and write right frame to it. + // link right node - if( !(new_page = bt_newpage(bt, bt->frame)) ) - return bt->err; + if( page_no > ROOT_page ) { + right = bt_getid (page->right); + bt_putid(bt->frame->right, right); + } - // remember fence key for new right page to add - // as foster child to the left node + // get new free page and write frame to it. - key = keyptr(bt->frame, idx); - memcpy (fencekey, key, key->len + 1); + if( !(new_page = bt_newpage(bt, bt->frame)) ) + return bt->err; - // update lower keys and foster children to continue in old page + // update lower keys to continue in old page memcpy (bt->frame, page, bt->mgr->page_size); memset (page+1, 0, bt->mgr->page_size - sizeof(*page)); nxt = bt->mgr->page_size; - page->dirty = 0; page->act = 0; cnt = 0; idx = 0; // assemble page of smaller keys - // to remain in the old page + // (they're all active keys) while( cnt++ < max / 2 ) { key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); - memcpy (slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); - if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) ) - page->act++; - slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; - slotptr(page, idx)->off = nxt; - } - - // insert new foster child for right page in queue - // before any of the current foster children - - nxt -= *fencekey + 1; - memcpy ((unsigned char *)page + nxt, fencekey, *fencekey + 1); - - bt_putid (slotptr(page,++idx)->id, new_page); - slotptr(page, idx)->tod = tod; - slotptr(page, idx)->off = nxt; - page->foster++; - page->act++; - - // continue with old foster child keys - // note that none will be dead - - cnt = bt->frame->cnt - bt->frame->foster; - - while( cnt++ < bt->frame->cnt ) { - key = keyptr(bt->frame, cnt); - nxt -= key->len + 1; - memcpy ((unsigned char *)page + nxt, key, key->len + 1); - memcpy (slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); + memcpy(slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; page->act++; } + // remember fence key for old page + + memcpy(lowerkey, key, key->len + 1); + bt_putid(page->right, new_page); page->min = nxt; page->cnt = idx; - // link new right page - - bt_putid (page->right, new_page); - // if current page is the root page, split it if( page_no == ROOT_page ) - return bt_splitroot (bt, new_page); + return bt_splitroot (bt, lowerkey, oldkey, new_page); - // release wr lock on our page + // release wr lock on left page bt_unlockpage (BtLockWrite, set); - // obtain ParentModification lock for current page - // to fix new fence key and oldest foster child on page + // obtain Parent/Write locks + // for left and right node pages - bt_lockpage (BtLockParent, set); + nset = bt_pinlatch (bt, new_page); - // get our new fence key to insert in parent node - - bt_lockpage (BtLockRead, set); - - key = keyptr(page, page->cnt-1); - memcpy (fencekey, key, key->len+1); + bt_lockpage (BtLockParent, nset); + bt_lockpage (BtLockParent, set); - bt_unlockpage (BtLockRead, set); + // insert new fence for reformulated left block - if( bt_insertkey (bt, fencekey + 1, *fencekey, page_no, tod, lvl + 1) ) + if( bt_insertkey (bt, lowerkey+1, *lowerkey, lvl + 1, page_no, tod) ) return bt->err; - // lock our page for writing - - bt_lockpage (BtLockRead, set); - - // switch old parent key from us to our oldest foster child + // fix old fence for newly allocated right block page - key = keyptr(page, page->cnt); - memcpy (fencekey, key, key->len+1); - - new_page = bt_getid (slotptr(page, page->cnt)->id); - bt_unlockpage (BtLockRead, set); - - if( bt_insertkey (bt, fencekey + 1, *fencekey, new_page, tod, lvl + 1) ) + if( bt_insertkey (bt, oldkey+1, *oldkey, lvl + 1, new_page, tod) ) return bt->err; - // now that it has its own parent pointer, - // remove oldest foster child from our page - - bt_lockpage (BtLockWrite, set); - memset (slotptr(page, page->cnt), 0, sizeof(BtSlot)); - page->dirty = 1; - page->foster--; - page->cnt--; - page->act--; + // release Parent locks - // unlock and unpin - - bt_unlockpage (BtLockWrite, set); + bt_unlockpage (BtLockParent, nset); bt_unlockpage (BtLockParent, set); + bt_unpinlatch (nset); bt_unpinlatch (set); bt_unpinpool (pool); return 0; } -// Insert new key into the btree at leaf level. +// Insert new key into the btree at requested level. +// Level zero pages are leaf pages. Page is unlocked at exit. -BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod, uint lvl) +BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, uid id, uint tod) { uint slot, idx; BtPage page; BtKey ptr; - while( 1 ) { - if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) - ptr = keyptr(bt->page, slot); - else - { - if ( !bt->err ) - bt->err = BTERR_ovflw; - return bt->err; - } + while( 1 ) { + if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) + ptr = keyptr(bt->page, slot); + else + { + if ( !bt->err ) + bt->err = BTERR_ovflw; + return bt->err; + } - // if key already exists, update id and return + // if key already exists, update id and return - page = bt->page; + page = bt->page; - if( !keycmp (ptr, key, len) ) { - if( slotptr(page, slot)->dead ) - page->act++; - slotptr(page, slot)->dead = 0; - slotptr(page, slot)->tod = tod; - bt_putid(slotptr(page,slot)->id, id); - bt_unlockpage(BtLockWrite, bt->set); - bt_unpinlatch (bt->set); - bt_unpinpool (bt->pool); - return bt->err; - } + if( !keycmp (ptr, key, len) ) { + slotptr(page, slot)->dead = 0; + slotptr(page, slot)->tod = tod; + bt_putid(slotptr(page,slot)->id, id); + bt_unlockpage(BtLockWrite, bt->set); + bt_unpinlatch(bt->set); + bt_unpinpool (bt->pool); + return bt->err; + } - // check if page has enough space + // check if page has enough space - if( slot = bt_cleanpage (bt, len, slot) ) - break; + if( slot = bt_cleanpage (bt, len, slot) ) + break; - if( bt_splitpage (bt) ) - return bt->err; - } + if( bt_splitpage (bt) ) + return bt->err; + } - bt_addkeytopage (bt, slot, key, len, id, tod); + // calculate next available slot and copy key into page - bt_unlockpage (BtLockWrite, bt->set); - bt_unpinlatch (bt->set); - bt_unpinpool (bt->pool); - return 0; + page->min -= len + 1; // reset lowest used offset + ((unsigned char *)page)[page->min] = len; + memcpy ((unsigned char *)page + page->min +1, key, len ); + + for( idx = slot; idx < page->cnt; idx++ ) + if( slotptr(page, idx)->dead ) + break; + + // now insert key into array before slot + // preserving the fence slot + + if( idx == page->cnt ) + idx++, page->cnt++; + + page->act++; + + while( idx > slot ) + *slotptr(page, idx) = *slotptr(page, idx -1), idx--; + + bt_putid(slotptr(page,slot)->id, id); + slotptr(page, slot)->off = page->min; + slotptr(page, slot)->tod = tod; + slotptr(page, slot)->dead = 0; + + bt_unlockpage (BtLockWrite, bt->set); + bt_unpinlatch (bt->set); + bt_unpinpool (bt->pool); + return 0; } // cache page of keys into cursor and return starting slot for given key @@ -2123,9 +2027,7 @@ uint slot; // cache page for retrieval if( slot = bt_loadpage (bt, key, len, 0, BtLockRead) ) memcpy (bt->cursor, bt->page, bt->mgr->page_size); - bt->cursor_page = bt->page_no; - bt_unlockpage(BtLockRead, bt->set); bt_unpinlatch (bt->set); bt_unpinpool (bt->pool); @@ -2137,17 +2039,16 @@ uint slot; uint bt_nextkey (BtDb *bt, uint slot) { -BtLatchSet *set; BtPool *pool; BtPage page; uid right; do { right = bt_getid(bt->cursor->right); - while( slot++ < bt->cursor->cnt - bt->cursor->foster ) + while( slot++ < bt->cursor->cnt ) if( slotptr(bt->cursor,slot)->dead ) continue; - else if( right || (slot < bt->cursor->cnt - bt->cursor->foster) ) + else if( right || (slot < bt->cursor->cnt)) return slot; else break; @@ -2156,18 +2057,19 @@ uid right; break; bt->cursor_page = right; + if( pool = bt_pinpool (bt, right) ) page = bt_page (bt, pool, right); else return 0; - set = bt_pinlatch (bt, right); - bt_lockpage(BtLockRead, set); + bt->set = bt_pinlatch (bt, right); + bt_lockpage(BtLockRead, bt->set); memcpy (bt->cursor, page, bt->mgr->page_size); - bt_unlockpage(BtLockRead, set); - bt_unpinlatch (set); + bt_unlockpage(BtLockRead, bt->set); + bt_unpinlatch (bt->set); bt_unpinpool (pool); slot = 0; } while( 1 ); @@ -2190,7 +2092,6 @@ uint bt_tod(BtDb *bt, uint slot) return slotptr(bt->cursor,slot)->tod; } - #ifdef STANDALONE void bt_latchaudit (BtDb *bt) @@ -2217,11 +2118,11 @@ uid page_no; } for( hashidx = 0; hashidx < bt->mgr->latchmgr->latchhash; hashidx++ ) { - if( *(ushort *)bt->mgr->latchmgr->table[hashidx].latch ) + if( *(uint *)bt->mgr->latchmgr->table[hashidx].latch ) fprintf(stderr, "latchmgr locked\n"); if( idx = bt->mgr->latchmgr->table[hashidx].slot ) do { set = bt->mgr->latchsets + idx; - if( *(ushort *)set->readwr || *(ushort *)set->access || *(ushort *)set->parent ) + if( *(uint *)set->readwr || *(ushort *)set->access || *(ushort *)set->parent ) fprintf(stderr, "latchset %d locked\n", idx); if( set->hash != hashidx ) fprintf(stderr, "latchset %d wrong hashidx\n", idx); @@ -2262,7 +2163,6 @@ uid next, page_no = LEAF_page; // start on first page of leaves unsigned char key[256]; ThreadArg *args = arg; int ch, len = 0, slot; -BtLatchSet *set; time_t tod[1]; BtPool *pool; BtPage page; @@ -2280,6 +2180,7 @@ FILE *in; bt_latchaudit (bt); fprintf(stderr, "finished latch mgr audit\n"); break; + case 'w': fprintf(stderr, "started indexing for %s\n", args->infile); if( in = fopen (args->infile, "rb") ) @@ -2294,7 +2195,7 @@ FILE *in; else if( args->num ) sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9; - if( bt_insertkey (bt, key, len, line, *tod, 0) ) + if( bt_insertkey (bt, key, len, 0, line, *tod) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } @@ -2316,7 +2217,7 @@ FILE *in; else if( args->num ) sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9; - if( bt_deletekey (bt, key, len) ) + if( bt_deletekey (bt, key, len, 0) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } @@ -2371,17 +2272,17 @@ FILE *in; fprintf(stderr, "started reading\n"); do { - if( pool = bt_pinpool (bt, page_no) ) - page = bt_page (bt, pool, page_no); + if( bt->pool = bt_pinpool (bt, page_no) ) + page = bt_page (bt, bt->pool, page_no); else break; - set = bt_pinlatch (bt, page_no); - bt_lockpage (BtLockRead, set); + bt->set = bt_pinlatch (bt, page_no); + bt_lockpage (BtLockRead, bt->set); cnt += page->act; next = bt_getid (page->right); - bt_unlockpage (BtLockRead, set); - bt_unpinlatch (set); - bt_unpinpool (pool); + bt_unlockpage (BtLockRead, bt->set); + bt_unpinlatch (bt->set); + bt_unpinpool (bt->pool); } while( page_no = next ); cnt--; // remove stopper key