// btree version 2t sched_yield version of spinlocks // with reworked bt_deletekey code // 12 MAR 2014 // author: karl malbrain, malbrain@cal.berkeley.edu /* This work, including the source code, documentation and related data, is placed into the public domain. The orginal author is Karl Malbrain. THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE, ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE RESULTING FROM THE USE, MODIFICATION, OR REDISTRIBUTION OF THIS SOFTWARE. */ // Please see the project home page for documentation // code.google.com/p/high-concurrency-btree #define _FILE_OFFSET_BITS 64 #define _LARGEFILE64_SOURCE #ifdef linux #define _GNU_SOURCE #endif #ifdef unix #include #include #include #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #include #include #include #include #include #endif #include #include typedef unsigned long long uid; #ifndef unix typedef unsigned long long off64_t; typedef unsigned short ushort; typedef unsigned int uint; #endif #define BT_latchtable 8192 // number of latch manager slots #define BT_ro 0x6f72 // ro #define BT_rw 0x7772 // rw #define BT_fl 0x6c66 // fl #define BT_maxbits 24 // maximum page size in bits #define BT_minbits 9 // minimum page size in bits #define BT_minpage (1 << BT_minbits) // minimum page size #define BT_maxpage (1 << BT_maxbits) // maximum page size /* There are five lock types for each node in three independent sets: 1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. 2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. 5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. */ typedef enum{ BtLockAccess, BtLockDelete, BtLockRead, BtLockWrite, BtLockParent }BtLock; // definition for latch implementation // exclusive is set for write access // share is count of read accessors // grant write lock when share == 0 volatile typedef struct { ushort exclusive:1; ushort pending:1; ushort share:14; } BtSpinLatch; #define XCL 1 #define PEND 2 #define BOTH 3 #define SHARE 4 // hash table entries typedef struct { BtSpinLatch latch[1]; volatile ushort slot; // Latch table entry at head of chain } BtHashEntry; // latch manager table structure typedef struct { BtSpinLatch readwr[1]; // read/write page lock BtSpinLatch access[1]; // Access Intent/Page delete BtSpinLatch parent[1]; // Posting of fence key in parent BtSpinLatch busy[1]; // slot is being moved between chains volatile ushort next; // next entry in hash table chain volatile ushort prev; // prev entry in hash table chain volatile ushort pin; // number of outstanding locks volatile ushort hash; // hash slot entry is under volatile uid page_no; // latch set page number } BtLatchSet; // Define the length of the page and key pointers #define BtId 6 // Page key slot definition. // If BT_maxbits is 15 or less, you can save 2 bytes // for each key stored by making the first two uints // into ushorts. You can also save 4 bytes by removing // the tod field from the key. // Keys are marked dead, but remain on the page until // cleanup is called. The fence key (highest key) for // the page is always present, even if dead. typedef struct { uint off:BT_maxbits; // page offset for key start uint dead:1; // set for deleted key uint tod; // time-stamp for key unsigned char id[BtId]; // id associated with key } BtSlot; // The key structure occupies space at the upper end of // each page. It's a length byte followed by the value // bytes. typedef struct { unsigned char len; unsigned char key[0]; } *BtKey; // The first part of an index page. // It is immediately followed // by the BtSlot array of keys. typedef struct BtPage_ { uint cnt; // count of keys in page uint act; // count of active keys uint min; // next key offset unsigned char bits:7; // page size in bits unsigned char free:1; // page is on free list unsigned char lvl:6; // level of page unsigned char kill:1; // page is being deleted unsigned char dirty:1; // page is dirty unsigned char right[BtId]; // page number to right } *BtPage; // The memory mapping hash table entry typedef struct { BtPage page; // mapped page pointer uid page_no; // mapped page number void *lruprev; // least recently used previous cache block void *lrunext; // lru next cache block void *hashprev; // previous cache block for the same hash idx void *hashnext; // next cache block for the same hash idx #ifndef unix HANDLE hmap; #endif }BtHash; typedef struct { struct BtPage_ alloc[2]; // next & free page_nos in right ptr BtSpinLatch lock[1]; // allocation area lite latch ushort latchdeployed; // highest number of latch entries deployed ushort nlatchpage; // number of latch pages at BT_latch ushort latchtotal; // number of page latch entries ushort latchhash; // number of latch hash table slots ushort latchvictim; // next latch entry to examine BtHashEntry table[0]; // the hash table } BtLatchMgr; // The object structure for Btree access typedef struct _BtDb { uint page_size; // each page size uint page_bits; // each page size in bits uint seg_bits; // segment size in pages in bits uid page_no; // current page number uid cursor_page; // current cursor page number int err; uint mode; // read-write mode uint mapped_io; // use memory mapping BtPage temp; // temporary frame buffer (memory mapped/file IO) BtPage alloc; // frame buffer for alloc page ( page 0 ) BtPage cursor; // cached frame for start/next (never mapped) BtPage frame; // spare frame for the page split (never mapped) BtPage zero; // zeroes frame buffer (never mapped) BtPage page; // current page BtLatchSet *latch; // current page latch BtLatchMgr *latchmgr; // mapped latch page from allocation page BtLatchSet *latchsets; // mapped latch set from latch pages #ifdef unix int idx; #else HANDLE idx; HANDLE halloc; // allocation and latch table handle #endif unsigned char *mem; // frame, cursor, page memory buffer int nodecnt; // highest page cache segment in use int nodemax; // highest page cache segment allocated int hashmask; // number of pages in segments - 1 int hashsize; // size of hash table int found; // last deletekey found key BtHash *lrufirst; // lru list head BtHash *lrulast; // lru list tail ushort *cache; // hash table for cached segments BtHash *nodes; // segment cache } BtDb; typedef enum { BTERR_ok = 0, BTERR_notfound, BTERR_struct, BTERR_ovflw, BTERR_lock, BTERR_hash, BTERR_kill, BTERR_map, BTERR_wrt, BTERR_eof } BTERR; // B-Tree functions extern void bt_close (BtDb *bt); extern BtDb *bt_open (char *name, uint mode, uint bits, uint cacheblk, uint pgblk, uint hashsize); extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, uid id, uint tod); extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl); extern uid bt_findkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_startkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_nextkey (BtDb *bt, uint slot); // internal functions BTERR bt_update (BtDb *bt, BtPage page, uid page_no); BTERR bt_mappage (BtDb *bt, BtPage *page, uid page_no); // Helper functions to return slot values extern BtKey bt_key (BtDb *bt, uint slot); extern uid bt_uid (BtDb *bt, uint slot); extern uint bt_tod (BtDb *bt, uint slot); // BTree page number constants #define ALLOC_page 0 #define ROOT_page 1 #define LEAF_page 2 #define LATCH_page 3 // Number of levels to create in a new BTree #define MIN_lvl 2 // The page is allocated from low and hi ends. // The key offsets and row-id's are allocated // from the bottom, while the text of the key // is allocated from the top. When the two // areas meet, the page is split into two. // A key consists of a length byte, two bytes of // index number (0 - 65534), and up to 253 bytes // of key value. Duplicate keys are discarded. // Associated with each key is a 48 bit row-id. // The b-tree root is always located at page 1. // The first leaf page of level zero is always // located on page 2. // The b-tree pages are linked with right // pointers to facilitate enumerators, // and provide for concurrency. // When to root page fills, it is split in two and // the tree height is raised by a new root at page // one with two keys. // Deleted keys are marked with a dead bit until // page cleanup The fence key for a node is always // present, even after deletion and cleanup. // Deleted leaf pages are reclaimed on a free list. // The upper levels of the btree are fixed on creation. // Groups of pages from the btree are optionally // cached with memory mapping. A hash table is used to keep // track of the cached pages. This behaviour is controlled // by the number of cache blocks parameter and pages per block // given to bt_open. // To achieve maximum concurrency one page is locked at a time // as the tree is traversed to find leaf key in question. The right // page numbers are used in cases where the page is being split, // or consolidated. // Page 0 (ALLOC page) is dedicated to lock for new page extensions, // and chains empty leaf pages together for reuse. // Parent locks are obtained to prevent resplitting or deleting a node // before its fence is posted into its upper level. // A special open mode of BT_fl is provided to safely access files on // WIN32 networks. WIN32 network operations should not use memory mapping. // This WIN32 mode sets FILE_FLAG_NOBUFFERING and FILE_FLAG_WRITETHROUGH // to prevent local caching of network file contents. // Access macros to address slot and key values from the page. // Page slots use 1 based indexing. #define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1)) #define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off)) void bt_putid(unsigned char *dest, uid id) { int i = BtId; while( i-- ) dest[i] = (unsigned char)id, id >>= 8; } uid bt_getid(unsigned char *src) { uid id = 0; int i; for( i = 0; i < BtId; i++ ) id <<= 8, id |= *src++; return id; } BTERR bt_abort (BtDb *bt, BtPage page, uid page_no, BTERR err) { BtKey ptr; fprintf(stderr, "\n Btree2 abort, error %d on page %.8x\n", err, page_no); fprintf(stderr, "level=%d kill=%d free=%d cnt=%x act=%x\n", page->lvl, page->kill, page->free, page->cnt, page->act); ptr = keyptr(page, page->cnt); fprintf(stderr, "fence='%.*s'\n", ptr->len, ptr->key); fprintf(stderr, "right=%.8x\n", bt_getid(page->right)); return bt->err = err; } // Spin Latch Manager // wait until write lock mode is clear // and add 1 to the share count void bt_spinreadlock(BtSpinLatch *latch) { ushort prev; do { #ifdef unix prev = __sync_fetch_and_add ((ushort *)latch, SHARE); #else prev = _InterlockedExchangeAdd16((ushort *)latch, SHARE); #endif // see if exclusive request is granted or pending if( !(prev & BOTH) ) return; #ifdef unix prev = __sync_fetch_and_add ((ushort *)latch, -SHARE); #else prev = _InterlockedExchangeAdd16((ushort *)latch, -SHARE); #endif #ifdef unix } while( sched_yield(), 1 ); #else } while( SwitchToThread(), 1 ); #endif } // wait for other read and write latches to relinquish void bt_spinwritelock(BtSpinLatch *latch) { ushort prev; do { #ifdef unix prev = __sync_fetch_and_or((ushort *)latch, PEND | XCL); #else prev = _InterlockedOr16((ushort *)latch, PEND | XCL); #endif if( !(prev & XCL) ) if( !(prev & ~BOTH) ) return; else #ifdef unix __sync_fetch_and_and ((ushort *)latch, ~XCL); #else _InterlockedAnd16((ushort *)latch, ~XCL); #endif #ifdef unix } while( sched_yield(), 1 ); #else } while( SwitchToThread(), 1 ); #endif } // try to obtain write lock // return 1 if obtained, // 0 otherwise int bt_spinwritetry(BtSpinLatch *latch) { ushort prev; #ifdef unix prev = __sync_fetch_and_or((ushort *)latch, XCL); #else prev = _InterlockedOr16((ushort *)latch, XCL); #endif // take write access if all bits are clear if( !(prev & XCL) ) if( !(prev & ~BOTH) ) return 1; else #ifdef unix __sync_fetch_and_and ((ushort *)latch, ~XCL); #else _InterlockedAnd16((ushort *)latch, ~XCL); #endif return 0; } // clear write mode void bt_spinreleasewrite(BtSpinLatch *latch) { #ifdef unix __sync_fetch_and_and((ushort *)latch, ~BOTH); #else _InterlockedAnd16((ushort *)latch, ~BOTH); #endif } // decrement reader count void bt_spinreleaseread(BtSpinLatch *latch) { #ifdef unix __sync_fetch_and_add((ushort *)latch, -SHARE); #else _InterlockedExchangeAdd16((ushort *)latch, -SHARE); #endif } // link latch table entry into latch hash table void bt_latchlink (BtDb *bt, ushort hashidx, ushort victim, uid page_no) { BtLatchSet *latch = bt->latchsets + victim; if( latch->next = bt->latchmgr->table[hashidx].slot ) bt->latchsets[latch->next].prev = victim; bt->latchmgr->table[hashidx].slot = victim; latch->page_no = page_no; latch->hash = hashidx; latch->prev = 0; } // release latch pin void bt_unpinlatch (BtLatchSet *latch) { #ifdef unix __sync_fetch_and_add(&latch->pin, -1); #else _InterlockedDecrement16 (&latch->pin); #endif } // find existing latchset or inspire new one // return with latchset pinned BtLatchSet *bt_pinlatch (BtDb *bt, uid page_no) { ushort hashidx = page_no % bt->latchmgr->latchhash; ushort slot, avail = 0, victim, idx; BtLatchSet *latch; // obtain read lock on hash table entry bt_spinreadlock(bt->latchmgr->table[hashidx].latch); if( slot = bt->latchmgr->table[hashidx].slot ) do { latch = bt->latchsets + slot; if( page_no == latch->page_no ) break; } while( slot = latch->next ); if( slot ) { #ifdef unix __sync_fetch_and_add(&latch->pin, 1); #else _InterlockedIncrement16 (&latch->pin); #endif } bt_spinreleaseread (bt->latchmgr->table[hashidx].latch); if( slot ) return latch; // try again, this time with write lock bt_spinwritelock(bt->latchmgr->table[hashidx].latch); if( slot = bt->latchmgr->table[hashidx].slot ) do { latch = bt->latchsets + slot; if( page_no == latch->page_no ) break; if( !latch->pin && !avail ) avail = slot; } while( slot = latch->next ); // found our entry, or take over an unpinned one if( slot || (slot = avail) ) { latch = bt->latchsets + slot; #ifdef unix __sync_fetch_and_add(&latch->pin, 1); #else _InterlockedIncrement16 (&latch->pin); #endif latch->page_no = page_no; bt_spinreleasewrite(bt->latchmgr->table[hashidx].latch); return latch; } // see if there are any unused entries #ifdef unix victim = __sync_fetch_and_add (&bt->latchmgr->latchdeployed, 1) + 1; #else victim = _InterlockedIncrement16 (&bt->latchmgr->latchdeployed); #endif if( victim < bt->latchmgr->latchtotal ) { latch = bt->latchsets + victim; #ifdef unix __sync_fetch_and_add(&latch->pin, 1); #else _InterlockedIncrement16 (&latch->pin); #endif bt_latchlink (bt, hashidx, victim, page_no); bt_spinreleasewrite (bt->latchmgr->table[hashidx].latch); return latch; } #ifdef unix victim = __sync_fetch_and_add (&bt->latchmgr->latchdeployed, -1); #else victim = _InterlockedDecrement16 (&bt->latchmgr->latchdeployed); #endif // find and reuse previous lock entry while( 1 ) { #ifdef unix victim = __sync_fetch_and_add(&bt->latchmgr->latchvictim, 1); #else victim = _InterlockedIncrement16 (&bt->latchmgr->latchvictim) - 1; #endif // we don't use slot zero if( victim %= bt->latchmgr->latchtotal ) latch = bt->latchsets + victim; else continue; // take control of our slot // from other threads if( latch->pin || !bt_spinwritetry (latch->busy) ) continue; idx = latch->hash; // try to get write lock on hash chain // skip entry if not obtained // or has outstanding locks if( !bt_spinwritetry (bt->latchmgr->table[idx].latch) ) { bt_spinreleasewrite (latch->busy); continue; } if( latch->pin ) { bt_spinreleasewrite (latch->busy); bt_spinreleasewrite (bt->latchmgr->table[idx].latch); continue; } // unlink our available victim from its hash chain if( latch->prev ) bt->latchsets[latch->prev].next = latch->next; else bt->latchmgr->table[idx].slot = latch->next; if( latch->next ) bt->latchsets[latch->next].prev = latch->prev; bt_spinreleasewrite (bt->latchmgr->table[idx].latch); #ifdef unix __sync_fetch_and_add(&latch->pin, 1); #else _InterlockedIncrement16 (&latch->pin); #endif bt_latchlink (bt, hashidx, victim, page_no); bt_spinreleasewrite (bt->latchmgr->table[hashidx].latch); bt_spinreleasewrite (latch->busy); return latch; } } // close and release memory void bt_close (BtDb *bt) { BtHash *hash; #ifdef unix munmap (bt->latchsets, bt->latchmgr->nlatchpage * bt->page_size); munmap (bt->latchmgr, bt->page_size); #else FlushViewOfFile(bt->latchmgr, 0); UnmapViewOfFile(bt->latchmgr); CloseHandle(bt->halloc); #endif #ifdef unix // release mapped pages if( hash = bt->lrufirst ) do munmap (hash->page, (bt->hashmask+1) << bt->page_bits); while(hash = hash->lrunext); if( bt->mem ) free (bt->mem); close (bt->idx); free (bt->cache); free (bt); #else if( hash = bt->lrufirst ) do { FlushViewOfFile(hash->page, 0); UnmapViewOfFile(hash->page); CloseHandle(hash->hmap); } while(hash = hash->lrunext); if( bt->mem) VirtualFree (bt->mem, 0, MEM_RELEASE); FlushFileBuffers(bt->idx); CloseHandle(bt->idx); GlobalFree (bt->cache); GlobalFree (bt); #endif } // open/create new btree // call with file_name, BT_openmode, bits in page size (e.g. 16), // size of mapped page pool (e.g. 8192) BtDb *bt_open (char *name, uint mode, uint bits, uint nodemax, uint segsize, uint hashsize) { uint lvl, attr, cacheblk, last, slot, idx; uint nlatchpage, latchhash; BtLatchMgr *latchmgr; off64_t size; uint amt[1]; BtKey key; BtDb* bt; int flag; #ifndef unix SYSTEM_INFO sysinfo[1]; OVERLAPPED ovl[1]; uint len, flags; #else struct flock lock[1]; #endif // determine sanity of page size and buffer pool if( bits > BT_maxbits ) bits = BT_maxbits; else if( bits < BT_minbits ) bits = BT_minbits; #ifdef unix bt = calloc (1, sizeof(BtDb)); bt->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); if( bt->idx == -1 ) return free(bt), NULL; cacheblk = 4096; // minimum mmap segment size for unix #else bt = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtDb)); attr = FILE_ATTRIBUTE_NORMAL; bt->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL); if( bt->idx == INVALID_HANDLE_VALUE ) return GlobalFree(bt), NULL; // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity GetSystemInfo(sysinfo); cacheblk = sysinfo->dwAllocationGranularity; #endif #ifdef unix memset (lock, 0, sizeof(lock)); lock->l_type = F_WRLCK; lock->l_len = sizeof(struct BtPage_); lock->l_whence = 0; if( fcntl (bt->idx, F_SETLKW, lock) < 0 ) return bt_close (bt), NULL; #else memset (ovl, 0, sizeof(ovl)); len = sizeof(struct BtPage_); // use large offsets to // simulate advisory locking ovl->OffsetHigh |= 0x80000000; if( mode == BtLockDelete || mode == BtLockWrite || mode == BtLockParent ) flags |= LOCKFILE_EXCLUSIVE_LOCK; if( LockFileEx (bt->idx, flags, 0, len, 0L, ovl) ) return bt_close (bt), NULL; #endif #ifdef unix latchmgr = malloc (BT_maxpage); *amt = 0; // read minimum page size to get root info if( size = lseek (bt->idx, 0L, 2) ) { if( pread(bt->idx, latchmgr, BT_minpage, 0) == BT_minpage ) bits = latchmgr->alloc->bits; else return free(bt), free(latchmgr), NULL; } else if( mode == BT_ro ) return free(latchmgr), bt_close (bt), NULL; #else latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE); size = GetFileSize(bt->idx, amt); if( size || *amt ) { if( !ReadFile(bt->idx, (char *)latchmgr, BT_minpage, amt, NULL) ) return bt_close (bt), NULL; bits = latchmgr->alloc->bits; } else if( mode == BT_ro ) return bt_close (bt), NULL; #endif bt->page_size = 1 << bits; bt->page_bits = bits; bt->mode = mode; if( cacheblk < bt->page_size ) cacheblk = bt->page_size; // mask for partial memmaps bt->hashmask = (cacheblk >> bits) - 1; // see if requested size of pages per memmap is greater if( (1 << segsize) > bt->hashmask ) bt->hashmask = (1 << segsize) - 1; bt->seg_bits = 0; while( (1 << bt->seg_bits) <= bt->hashmask ) bt->seg_bits++; bt->hashsize = hashsize; if( bt->nodemax = nodemax++ ) { #ifdef unix bt->nodes = calloc (nodemax, sizeof(BtHash)); bt->cache = calloc (hashsize, sizeof(ushort)); #else bt->nodes = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, nodemax * sizeof(BtHash)); bt->cache = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort)); #endif bt->mapped_io = 1; } if( size || *amt ) { goto btlatch; } // initialize an empty b-tree with latch page, root page, page of leaves // and page(s) of latches memset (latchmgr, 0, 1 << bits); nlatchpage = BT_latchtable; if( nlatchpage > nodemax ) nlatchpage = nodemax; nlatchpage *= sizeof(BtLatchSet); nlatchpage += bt->page_size - 1; nlatchpage /= bt->page_size; bt_putid(latchmgr->alloc->right, MIN_lvl+1+nlatchpage); latchmgr->alloc->bits = bt->page_bits; latchmgr->nlatchpage = nlatchpage; latchmgr->latchtotal = nlatchpage * bt->page_size / sizeof(BtLatchSet); // initialize latch manager latchhash = (bt->page_size - sizeof(BtLatchMgr)) / sizeof(BtHashEntry); // size of hash table = total number of latchsets if( latchhash > latchmgr->latchtotal ) latchhash = latchmgr->latchtotal; latchmgr->latchhash = latchhash; #ifdef unix if( write (bt->idx, latchmgr, bt->page_size) < bt->page_size ) return bt_close (bt), NULL; #else if( !WriteFile (bt->idx, (char *)latchmgr, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif memset (latchmgr, 0, 1 << bits); latchmgr->alloc->bits = bt->page_bits; for( lvl=MIN_lvl; lvl--; ) { slotptr(latchmgr->alloc, 1)->off = bt->page_size - 3; bt_putid(slotptr(latchmgr->alloc, 1)->id, lvl ? MIN_lvl - lvl + 1 : 0); // next(lower) page number key = keyptr(latchmgr->alloc, 1); key->len = 2; // create stopper key key->key[0] = 0xff; key->key[1] = 0xff; latchmgr->alloc->min = bt->page_size - 3; latchmgr->alloc->lvl = lvl; latchmgr->alloc->cnt = 1; latchmgr->alloc->act = 1; #ifdef unix if( write (bt->idx, latchmgr, bt->page_size) < bt->page_size ) return bt_close (bt), NULL; #else if( !WriteFile (bt->idx, (char *)latchmgr, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif } // clear out latch manager locks // and rest of pages to round out segment memset(latchmgr, 0, bt->page_size); last = MIN_lvl + 1; while( last <= ((MIN_lvl + 1 + nlatchpage) | bt->hashmask) ) { #ifdef unix pwrite(bt->idx, latchmgr, bt->page_size, last << bt->page_bits); #else SetFilePointer (bt->idx, last << bt->page_bits, NULL, FILE_BEGIN); if( !WriteFile (bt->idx, (char *)latchmgr, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif last++; } btlatch: #ifdef unix lock->l_type = F_UNLCK; if( fcntl (bt->idx, F_SETLK, lock) < 0 ) return bt_close (bt), NULL; #else if( !UnlockFileEx (bt->idx, 0, sizeof(struct BtPage_), 0, ovl) ) return bt_close (bt), NULL; #endif #ifdef unix flag = PROT_READ | PROT_WRITE; bt->latchmgr = mmap (0, bt->page_size, flag, MAP_SHARED, bt->idx, ALLOC_page * bt->page_size); if( bt->latchmgr == MAP_FAILED ) return bt_close (bt), NULL; bt->latchsets = (BtLatchSet *)mmap (0, bt->latchmgr->nlatchpage * bt->page_size, flag, MAP_SHARED, bt->idx, LATCH_page * bt->page_size); if( bt->latchsets == MAP_FAILED ) return bt_close (bt), NULL; #else flag = PAGE_READWRITE; bt->halloc = CreateFileMapping(bt->idx, NULL, flag, 0, (BT_latchtable / (bt->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * bt->page_size, NULL); if( !bt->halloc ) return bt_close (bt), NULL; flag = FILE_MAP_WRITE; bt->latchmgr = MapViewOfFile(bt->halloc, flag, 0, 0, (BT_latchtable / (bt->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * bt->page_size); if( !bt->latchmgr ) return GetLastError(), bt_close (bt), NULL; bt->latchsets = (void *)((char *)bt->latchmgr + LATCH_page * bt->page_size); #endif #ifdef unix free (latchmgr); #else VirtualFree (latchmgr, 0, MEM_RELEASE); #endif #ifdef unix bt->mem = malloc (6 * bt->page_size); #else bt->mem = VirtualAlloc(NULL, 6 * bt->page_size, MEM_COMMIT, PAGE_READWRITE); #endif bt->frame = (BtPage)bt->mem; bt->cursor = (BtPage)(bt->mem + bt->page_size); bt->page = (BtPage)(bt->mem + 2 * bt->page_size); bt->alloc = (BtPage)(bt->mem + 3 * bt->page_size); bt->temp = (BtPage)(bt->mem + 4 * bt->page_size); bt->zero = (BtPage)(bt->mem + 5 * bt->page_size); memset (bt->zero, 0, bt->page_size); return bt; } // place write, read, or parent lock on requested page_no. void bt_lockpage(BtLock mode, BtLatchSet *latch) { switch( mode ) { case BtLockRead: bt_spinreadlock (latch->readwr); break; case BtLockWrite: bt_spinwritelock (latch->readwr); break; case BtLockAccess: bt_spinreadlock (latch->access); break; case BtLockDelete: bt_spinwritelock (latch->access); break; case BtLockParent: bt_spinwritelock (latch->parent); break; } } // remove write, read, or parent lock on requested page void bt_unlockpage(BtLock mode, BtLatchSet *latch) { switch( mode ) { case BtLockRead: bt_spinreleaseread (latch->readwr); break; case BtLockWrite: bt_spinreleasewrite (latch->readwr); break; case BtLockAccess: bt_spinreleaseread (latch->access); break; case BtLockDelete: bt_spinreleasewrite (latch->access); break; case BtLockParent: bt_spinreleasewrite (latch->parent); break; } } // allocate a new page and write page into it uid bt_newpage(BtDb *bt, BtPage page) { uid new_page; int reuse; // lock allocation page bt_spinwritelock(bt->latchmgr->lock); // use empty chain first // else allocate empty page if( new_page = bt_getid(bt->latchmgr->alloc[1].right) ) { if( bt_mappage (bt, &bt->temp, new_page) ) return 0; bt_putid(bt->latchmgr->alloc[1].right, bt_getid(bt->temp->right)); reuse = 1; } else { new_page = bt_getid(bt->latchmgr->alloc->right); bt_putid(bt->latchmgr->alloc->right, new_page+1); reuse = 0; } bt_spinreleasewrite(bt->latchmgr->lock); if( !bt->mapped_io ) if( bt_update(bt, page, new_page) ) return 0; //don't unlock on error else return new_page; #ifdef unix if( pwrite(bt->idx, page, bt->page_size, new_page << bt->page_bits) < bt->page_size ) return bt->err = BTERR_wrt, 0; // if writing first page of pool block, zero last page in the block if( !reuse && bt->hashmask > 0 && (new_page & bt->hashmask) == 0 ) { // use zero buffer to write zeros if( pwrite(bt->idx,bt->zero, bt->page_size, (new_page | bt->hashmask) << bt->page_bits) < bt->page_size ) return bt->err = BTERR_wrt, 0; } #else // bring new page into pool and copy page. // this will extend the file into the new pages. if( bt_mappage (bt, &bt->temp, new_page) ) return 0; memcpy(bt->temp, page, bt->page_size); #endif return new_page; } // compare two keys, returning > 0, = 0, or < 0 // as the comparison value int keycmp (BtKey key1, unsigned char *key2, uint len2) { uint len1 = key1->len; int ans; if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) ) return ans; if( len1 > len2 ) return 1; if( len1 < len2 ) return -1; return 0; } // Update current page of btree by writing file contents // or flushing mapped area to disk. BTERR bt_update (BtDb *bt, BtPage page, uid page_no) { off64_t off = page_no << bt->page_bits; #ifdef unix if( !bt->mapped_io ) if( pwrite(bt->idx, page, bt->page_size, off) != bt->page_size ) return bt->err = BTERR_wrt; #else uint amt[1]; if( !bt->mapped_io ) { SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !WriteFile (bt->idx, (char *)page, bt->page_size, amt, NULL) ) return GetLastError(), bt->err = BTERR_wrt; if( *amt < bt->page_size ) return GetLastError(), bt->err = BTERR_wrt; } else if( bt->mode == BT_fl ) { FlushViewOfFile(page, bt->page_size); FlushFileBuffers(bt->idx); } #endif return 0; } // find page in cache BtHash *bt_findhash(BtDb *bt, uid page_no) { BtHash *hash; uint idx; // compute cache block first page and hash idx page_no &= ~bt->hashmask; idx = (uint)(page_no >> bt->seg_bits) % bt->hashsize; if( bt->cache[idx] ) hash = bt->nodes + bt->cache[idx]; else return NULL; do if( hash->page_no == page_no ) break; while(hash = hash->hashnext ); return hash; } // add page cache entry to hash index void bt_linkhash(BtDb *bt, BtHash *node, uid page_no) { uint idx = (uint)(page_no >> bt->seg_bits) % bt->hashsize; BtHash *hash; if( bt->cache[idx] ) { node->hashnext = hash = bt->nodes + bt->cache[idx]; hash->hashprev = node; } node->hashprev = NULL; bt->cache[idx] = (ushort)(node - bt->nodes); } // remove cache entry from hash table void bt_unlinkhash(BtDb *bt, BtHash *node) { uint idx = (uint)(node->page_no >> bt->seg_bits) % bt->hashsize; BtHash *hash; // unlink node if( hash = node->hashprev ) hash->hashnext = node->hashnext; else if( hash = node->hashnext ) bt->cache[idx] = (ushort)(hash - bt->nodes); else bt->cache[idx] = 0; if( hash = node->hashnext ) hash->hashprev = node->hashprev; } // add cache page to lru chain and map pages BtPage bt_linklru(BtDb *bt, BtHash *hash, uid page_no) { int flag; off64_t off = (page_no & ~(uid)bt->hashmask) << bt->page_bits; off64_t limit = off + ((bt->hashmask+1) << bt->page_bits); BtHash *node; memset(hash, 0, sizeof(BtHash)); hash->page_no = (page_no & ~(uid)bt->hashmask); bt_linkhash(bt, hash, page_no); if( node = hash->lrunext = bt->lrufirst ) node->lruprev = hash; else bt->lrulast = hash; bt->lrufirst = hash; #ifdef unix flag = PROT_READ | ( bt->mode == BT_ro ? 0 : PROT_WRITE ); hash->page = (BtPage)mmap (0, (bt->hashmask+1) << bt->page_bits, flag, MAP_SHARED, bt->idx, off); if( hash->page == MAP_FAILED ) return bt->err = BTERR_map, (BtPage)NULL; #else flag = ( bt->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE ); hash->hmap = CreateFileMapping(bt->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL); if( !hash->hmap ) return bt->err = BTERR_map, NULL; flag = ( bt->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE ); hash->page = MapViewOfFile(hash->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (bt->hashmask+1) << bt->page_bits); if( !hash->page ) return bt->err = BTERR_map, NULL; #endif return (BtPage)((char*)hash->page + ((uint)(page_no & bt->hashmask) << bt->page_bits)); } // find or place requested page in page-cache // return memory address where page is located. BtPage bt_hashpage(BtDb *bt, uid page_no) { BtHash *hash, *node, *next; BtPage page; // find page in cache and move to top of lru list if( hash = bt_findhash(bt, page_no) ) { page = (BtPage)((char*)hash->page + ((uint)(page_no & bt->hashmask) << bt->page_bits)); // swap node in lru list if( node = hash->lruprev ) { if( next = node->lrunext = hash->lrunext ) next->lruprev = node; else bt->lrulast = node; if( next = hash->lrunext = bt->lrufirst ) next->lruprev = hash; else return bt->err = BTERR_hash, (BtPage)NULL; hash->lruprev = NULL; bt->lrufirst = hash; } return page; } // map pages and add to cache entry if( bt->nodecnt < bt->nodemax ) { hash = bt->nodes + ++bt->nodecnt; return bt_linklru(bt, hash, page_no); } // hash table is already full, replace last lru entry from the cache if( hash = bt->lrulast ) { // unlink from lru list if( node = bt->lrulast = hash->lruprev ) node->lrunext = NULL; else return bt->err = BTERR_hash, (BtPage)NULL; #ifdef unix munmap (hash->page, (bt->hashmask+1) << bt->page_bits); #else // FlushViewOfFile(hash->page, 0); UnmapViewOfFile(hash->page); CloseHandle(hash->hmap); #endif // unlink from hash table bt_unlinkhash(bt, hash); // map and add to cache return bt_linklru(bt, hash, page_no); } return bt->err = BTERR_hash, (BtPage)NULL; } // map a btree page onto current page BTERR bt_mappage (BtDb *bt, BtPage *page, uid page_no) { off64_t off = page_no << bt->page_bits; #ifndef unix int amt[1]; #endif if( bt->mapped_io ) { bt->err = 0; *page = bt_hashpage(bt, page_no); return bt->err; } #ifdef unix if( pread(bt->idx, *page, bt->page_size, off) < bt->page_size ) return bt->err = BTERR_map; #else SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !ReadFile(bt->idx, *page, bt->page_size, amt, NULL) ) return bt->err = BTERR_map; if( *amt < bt->page_size ) return bt->err = BTERR_map; #endif return 0; } // deallocate a deleted page // place on free chain out of allocator page // call with page latched for Writing and Deleting BTERR bt_freepage(BtDb *bt, uid page_no, BtPage page, BtLatchSet *latch) { if( bt_mappage (bt, &page, page_no) ) return bt->err; // lock allocation page bt_spinwritelock (bt->latchmgr->lock); // store chain in second right bt_putid(page->right, bt_getid(bt->latchmgr->alloc[1].right)); bt_putid(bt->latchmgr->alloc[1].right, page_no); page->free = 1; if( bt_update(bt, page, page_no) ) return bt->err; // unlock released page bt_unlockpage (BtLockDelete, latch); bt_unlockpage (BtLockWrite, latch); bt_unpinlatch (latch); // unlock allocation page bt_spinreleasewrite (bt->latchmgr->lock); return 0; } // find slot in page for given key at a given level int bt_findslot (BtDb *bt, unsigned char *key, uint len) { uint diff, higher = bt->page->cnt, low = 1, slot; uint good = 0; // make stopper key an infinite fence value if( bt_getid (bt->page->right) ) higher++; else good++; // low is the lowest candidate, higher is already // tested as .ge. the given key, loop ends when they meet while( diff = higher - low ) { slot = low + ( diff >> 1 ); if( keycmp (keyptr(bt->page, slot), key, len) < 0 ) low = slot + 1; else higher = slot, good++; } // return zero if key is on right link page return good ? higher : 0; } // find and load page at given level for given key // leave page rd or wr locked as requested int bt_loadpage (BtDb *bt, unsigned char *key, uint len, uint lvl, uint lock) { uid page_no = ROOT_page, prevpage = 0; uint drill = 0xff, slot; BtLatchSet *prevlatch; uint mode, prevmode; // start at root of btree and drill down do { // determine lock mode of drill level mode = (lock == BtLockWrite) && (drill == lvl) ? BtLockWrite : BtLockRead; bt->latch = bt_pinlatch(bt, page_no); bt->page_no = page_no; // obtain access lock using lock chaining if( page_no > ROOT_page ) bt_lockpage(BtLockAccess, bt->latch); if( prevpage ) { bt_unlockpage(prevmode, prevlatch); bt_unpinlatch(prevlatch); prevpage = 0; } // obtain read lock using lock chaining bt_lockpage(mode, bt->latch); if( page_no > ROOT_page ) bt_unlockpage(BtLockAccess, bt->latch); // map/obtain page contents if( bt_mappage (bt, &bt->page, page_no) ) return 0; // re-read and re-lock root after determining actual level of root if( bt->page->lvl != drill) { if( bt->page_no != ROOT_page ) return bt->err = BTERR_struct, 0; drill = bt->page->lvl; if( lock != BtLockRead && drill == lvl ) { bt_unlockpage(mode, bt->latch); bt_unpinlatch(bt->latch); continue; } } prevpage = bt->page_no; prevlatch = bt->latch; prevmode = mode; // find key on page at this level // and descend to requested level if( !bt->page->kill ) if( slot = bt_findslot (bt, key, len) ) { if( drill == lvl ) return slot; while( slotptr(bt->page, slot)->dead ) if( slot++ < bt->page->cnt ) continue; else goto slideright; page_no = bt_getid(slotptr(bt->page, slot)->id); drill--; continue; } // or slide right into next page slideright: page_no = bt_getid(bt->page->right); } while( page_no ); // return error on end of right chain bt->err = BTERR_eof; return 0; // return error } // a fence key was deleted from a page // push new fence value upwards BTERR bt_fixfence (BtDb *bt, uid page_no, uint lvl) { unsigned char leftkey[256], rightkey[256]; BtLatchSet *latch = bt->latch; BtKey ptr; // remove deleted key, the old fence value ptr = keyptr(bt->page, bt->page->cnt); memcpy(rightkey, ptr, ptr->len + 1); memset (slotptr(bt->page, bt->page->cnt--), 0, sizeof(BtSlot)); bt->page->dirty = 1; ptr = keyptr(bt->page, bt->page->cnt); memcpy(leftkey, ptr, ptr->len + 1); if( bt_update (bt, bt->page, page_no) ) return bt->err; bt_lockpage (BtLockParent, latch); bt_unlockpage (BtLockWrite, latch); // insert new (now smaller) fence key if( bt_insertkey (bt, leftkey+1, *leftkey, lvl + 1, page_no, time(NULL)) ) return bt->err; // remove old (larger) fence key if( bt_deletekey (bt, rightkey+1, *rightkey, lvl + 1) ) return bt->err; bt_unlockpage (BtLockParent, latch); bt_unpinlatch (latch); return 0; } // root has a single child // collapse a level from the btree // call with root locked in bt->page BTERR bt_collapseroot (BtDb *bt, BtPage root) { BtLatchSet *latch; uid child; uint idx; // find the child entry // and promote to new root do { for( idx = 0; idx++ < root->cnt; ) if( !slotptr(root, idx)->dead ) break; child = bt_getid (slotptr(root, idx)->id); latch = bt_pinlatch (bt, child); bt_lockpage (BtLockDelete, latch); bt_lockpage (BtLockWrite, latch); if( bt_mappage (bt, &bt->temp, child) ) return bt->err; memcpy (root, bt->temp, bt->page_size); if( bt_update (bt, root, ROOT_page) ) return bt->err; if( bt_freepage (bt, child, bt->temp, latch) ) return bt->err; } while( root->lvl > 1 && root->act == 1 ); bt_unlockpage (BtLockWrite, bt->latch); bt_unpinlatch (bt->latch); return 0; } // find and delete key on page by marking delete flag bit // when page becomes empty, delete it BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl) { unsigned char lowerkey[256], higherkey[256]; uint slot, dirty = 0, idx, fence, found; BtLatchSet *latch, *rlatch; uid page_no, right; BtKey ptr; if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) ptr = keyptr(bt->page, slot); else return bt->err; // are we deleting a fence slot? fence = slot == bt->page->cnt; // if key is found delete it, otherwise ignore request if( found = !keycmp (ptr, key, len) ) if( found = slotptr(bt->page, slot)->dead == 0 ) { dirty = slotptr(bt->page,slot)->dead = 1; bt->page->dirty = 1; bt->page->act--; // collapse empty slots while( idx = bt->page->cnt - 1 ) if( slotptr(bt->page, idx)->dead ) { *slotptr(bt->page, idx) = *slotptr(bt->page, idx + 1); memset (slotptr(bt->page, bt->page->cnt--), 0, sizeof(BtSlot)); } else break; } right = bt_getid(bt->page->right); page_no = bt->page_no; latch = bt->latch; if( !dirty ) { if( lvl ) return bt_abort (bt, bt->page, page_no, BTERR_notfound); bt_unlockpage(BtLockWrite, latch); bt_unpinlatch (latch); return bt->found = found, 0; } // did we delete a fence key in an upper level? if( lvl && bt->page->act && fence ) if( bt_fixfence (bt, page_no, lvl) ) return bt->err; else return bt->found = found, 0; // is this a collapsed root? if( lvl > 1 && page_no == ROOT_page && bt->page->act == 1 ) if( bt_collapseroot (bt, bt->page) ) return bt->err; else return bt->found = found, 0; // return if page is not empty if( bt->page->act ) { if( bt_update(bt, bt->page, page_no) ) return bt->err; bt_unlockpage(BtLockWrite, latch); bt_unpinlatch (latch); return bt->found = found, 0; } // cache copy of fence key // in order to find parent ptr = keyptr(bt->page, bt->page->cnt); memcpy(lowerkey, ptr, ptr->len + 1); // obtain lock on right page rlatch = bt_pinlatch (bt, right); bt_lockpage(BtLockWrite, rlatch); if( bt_mappage (bt, &bt->temp, right) ) return bt->err; if( bt->temp->kill ) { bt_abort(bt, bt->temp, right, 0); return bt_abort(bt, bt->page, bt->page_no, BTERR_kill); } // pull contents of next page into current empty page memcpy (bt->page, bt->temp, bt->page_size); // cache copy of key to update ptr = keyptr(bt->temp, bt->temp->cnt); memcpy(higherkey, ptr, ptr->len + 1); // Mark right page as deleted and point it to left page // until we can post updates at higher level. bt_putid(bt->temp->right, page_no); bt->temp->kill = 1; if( bt_update(bt, bt->page, page_no) ) return bt->err; if( bt_update(bt, bt->temp, right) ) return bt->err; bt_lockpage(BtLockParent, latch); bt_unlockpage(BtLockWrite, latch); bt_lockpage(BtLockParent, rlatch); bt_unlockpage(BtLockWrite, rlatch); // redirect higher key directly to consolidated node if( bt_insertkey (bt, higherkey+1, *higherkey, lvl+1, page_no, time(NULL)) ) return bt->err; // delete old lower key to consolidated node if( bt_deletekey (bt, lowerkey + 1, *lowerkey, lvl + 1) ) return bt->err; // obtain write & delete lock on deleted node // add right block to free chain bt_lockpage(BtLockDelete, rlatch); bt_lockpage(BtLockWrite, rlatch); bt_unlockpage(BtLockParent, rlatch); if( bt_freepage (bt, right, bt->temp, rlatch) ) return bt->err; bt_unlockpage(BtLockParent, latch); bt_unpinlatch(latch); return 0; } // find key in leaf level and return row-id uid bt_findkey (BtDb *bt, unsigned char *key, uint len) { uint slot; BtKey ptr; uid id; if( slot = bt_loadpage (bt, key, len, 0, BtLockRead) ) ptr = keyptr(bt->page, slot); else return 0; // if key exists, return row-id // otherwise return 0 if( ptr->len == len && !memcmp (ptr->key, key, len) ) id = bt_getid(slotptr(bt->page,slot)->id); else id = 0; bt_unlockpage (BtLockRead, bt->latch); bt_unpinlatch (bt->latch); return id; } // check page for space available, // clean if necessary and return // 0 - page needs splitting // >0 - go ahead with new slot uint bt_cleanpage(BtDb *bt, uint amt, uint slot) { uint nxt = bt->page_size; BtPage page = bt->page; uint cnt = 0, idx = 0; uint max = page->cnt; uint newslot = slot; BtKey key; int ret; if( page->min >= (max+1) * sizeof(BtSlot) + sizeof(*page) + amt + 1 ) return slot; // skip cleanup if nothing to reclaim if( !page->dirty ) return 0; memcpy (bt->frame, page, bt->page_size); // skip page info and set rest of page to zero memset (page+1, 0, bt->page_size - sizeof(*page)); page->act = 0; while( cnt++ < max ) { if( cnt == slot ) newslot = idx + 1; // always leave fence key in list if( cnt < max && slotptr(bt->frame,cnt)->dead ) continue; // copy key key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); // copy slot memcpy(slotptr(page, ++idx)->id, slotptr(bt->frame, cnt)->id, BtId); if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) ) page->act++; slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; } page->min = nxt; page->cnt = idx; if( page->min >= (max+1) * sizeof(BtSlot) + sizeof(*page) + amt + 1 ) return newslot; return 0; } // split the root and raise the height of the btree BTERR bt_splitroot(BtDb *bt, unsigned char *leftkey, uid page_no2) { uint nxt = bt->page_size; BtPage root = bt->page; uid right; // Obtain an empty page to use, and copy the current // root contents into it if( !(right = bt_newpage(bt, root)) ) return bt->err; // preserve the page info at the bottom // and set rest to zero memset(root+1, 0, bt->page_size - sizeof(*root)); // insert first key on newroot page nxt -= *leftkey + 1; memcpy ((unsigned char *)root + nxt, leftkey, *leftkey + 1); bt_putid(slotptr(root, 1)->id, right); slotptr(root, 1)->off = nxt; // insert second key on newroot page // and increase the root height nxt -= 3; ((unsigned char *)root)[nxt] = 2; ((unsigned char *)root)[nxt+1] = 0xff; ((unsigned char *)root)[nxt+2] = 0xff; bt_putid(slotptr(root, 2)->id, page_no2); slotptr(root, 2)->off = nxt; bt_putid(root->right, 0); root->min = nxt; // reset lowest used offset and key count root->cnt = 2; root->act = 2; root->lvl++; // update and release root (bt->page) if( bt_update(bt, root, bt->page_no) ) return bt->err; bt_unlockpage(BtLockWrite, bt->latch); bt_unpinlatch(bt->latch); return 0; } // split already locked full node // return unlocked. BTERR bt_splitpage (BtDb *bt) { uint cnt = 0, idx = 0, max, nxt = bt->page_size; unsigned char fencekey[256], rightkey[256]; uid page_no = bt->page_no, right; BtLatchSet *latch, *rlatch; BtPage page = bt->page; uint lvl = page->lvl; BtKey key; latch = bt->latch; // split higher half of keys to bt->frame // the last key (fence key) might be dead memset (bt->frame, 0, bt->page_size); max = page->cnt; cnt = max / 2; idx = 0; while( cnt++ < max ) { key = keyptr(page, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)bt->frame + nxt, key, key->len + 1); memcpy(slotptr(bt->frame,++idx)->id, slotptr(page,cnt)->id, BtId); if( !(slotptr(bt->frame, idx)->dead = slotptr(page, cnt)->dead) ) bt->frame->act++; slotptr(bt->frame, idx)->tod = slotptr(page, cnt)->tod; slotptr(bt->frame, idx)->off = nxt; } // remember fence key for new right page memcpy (rightkey, key, key->len + 1); bt->frame->bits = bt->page_bits; bt->frame->min = nxt; bt->frame->cnt = idx; bt->frame->lvl = lvl; // link right node if( page_no > ROOT_page ) memcpy (bt->frame->right, page->right, BtId); // get new free page and write frame to it. if( !(right = bt_newpage(bt, bt->frame)) ) return bt->err; // update lower keys to continue in old page memcpy (bt->frame, page, bt->page_size); memset (page+1, 0, bt->page_size - sizeof(*page)); nxt = bt->page_size; page->dirty = 0; page->act = 0; cnt = 0; idx = 0; // assemble page of smaller keys // (they're all active keys) while( cnt++ < max / 2 ) { key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); memcpy(slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; page->act++; } // remember fence key for smaller page memcpy (fencekey, key, key->len + 1); bt_putid(page->right, right); page->min = nxt; page->cnt = idx; // if current page is the root page, split it if( page_no == ROOT_page ) return bt_splitroot (bt, fencekey, right); // lock right page rlatch = bt_pinlatch (bt, right); bt_lockpage (BtLockParent, rlatch); // update left (containing) node if( bt_update(bt, page, page_no) ) return bt->err; bt_lockpage (BtLockParent, latch); bt_unlockpage (BtLockWrite, latch); // insert new fence for reformulated left block if( bt_insertkey (bt, fencekey+1, *fencekey, lvl+1, page_no, time(NULL)) ) return bt->err; // switch fence for right block of larger keys to new right page if( bt_insertkey (bt, rightkey+1, *rightkey, lvl+1, right, time(NULL)) ) return bt->err; bt_unlockpage (BtLockParent, latch); bt_unlockpage (BtLockParent, rlatch); bt_unpinlatch (rlatch); bt_unpinlatch (latch); return 0; } // Insert new key into the btree at requested level. // Pages are unlocked at exit. BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, uid id, uint tod) { uint slot, idx; BtPage page; BtKey ptr; while( 1 ) { if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) ptr = keyptr(bt->page, slot); else { if( !bt->err ) bt->err = BTERR_ovflw; return bt->err; } // if key already exists, update id and return page = bt->page; if( !keycmp (ptr, key, len) ) { if( slotptr(page, slot)->dead ) page->act++; slotptr(page, slot)->dead = 0; slotptr(page, slot)->tod = tod; bt_putid(slotptr(page,slot)->id, id); if( bt_update(bt, bt->page, bt->page_no) ) return bt->err; bt_unlockpage(BtLockWrite, bt->latch); bt_unpinlatch (bt->latch); return 0; } // check if page has enough space if( slot = bt_cleanpage (bt, len, slot) ) break; if( bt_splitpage (bt) ) return bt->err; } // calculate next available slot and copy key into page page->min -= len + 1; // reset lowest used offset ((unsigned char *)page)[page->min] = len; memcpy ((unsigned char *)page + page->min +1, key, len ); for( idx = slot; idx < page->cnt; idx++ ) if( slotptr(page, idx)->dead ) break; // now insert key into array before slot // preserving the fence slot if( idx == page->cnt ) idx++, page->cnt++; page->act++; while( idx > slot ) *slotptr(page, idx) = *slotptr(page, idx -1), idx--; bt_putid(slotptr(page,slot)->id, id); slotptr(page, slot)->off = page->min; slotptr(page, slot)->tod = tod; slotptr(page, slot)->dead = 0; if( bt_update(bt, bt->page, bt->page_no) ) return bt->err; bt_unlockpage(BtLockWrite, bt->latch); bt_unpinlatch(bt->latch); return 0; } // cache page of keys into cursor and return starting slot for given key uint bt_startkey (BtDb *bt, unsigned char *key, uint len) { uint slot; // cache page for retrieval if( slot = bt_loadpage (bt, key, len, 0, BtLockRead) ) memcpy (bt->cursor, bt->page, bt->page_size); else return 0; bt_unlockpage(BtLockRead, bt->latch); bt->cursor_page = bt->page_no; bt_unpinlatch (bt->latch); return slot; } // return next slot for cursor page // or slide cursor right into next page uint bt_nextkey (BtDb *bt, uint slot) { BtLatchSet *latch; off64_t right; do { right = bt_getid(bt->cursor->right); while( slot++ < bt->cursor->cnt ) if( slotptr(bt->cursor,slot)->dead ) continue; else if( right || (slot < bt->cursor->cnt)) return slot; else break; if( !right ) break; bt->cursor_page = right; latch = bt_pinlatch (bt, right); bt_lockpage(BtLockRead, latch); if( bt_mappage (bt, &bt->page, right) ) return 0; memcpy (bt->cursor, bt->page, bt->page_size); bt_unlockpage(BtLockRead, latch); bt_unpinlatch (latch); slot = 0; } while( 1 ); return bt->err = 0; } BtKey bt_key(BtDb *bt, uint slot) { return keyptr(bt->cursor, slot); } uid bt_uid(BtDb *bt, uint slot) { return bt_getid(slotptr(bt->cursor,slot)->id); } uint bt_tod(BtDb *bt, uint slot) { return slotptr(bt->cursor,slot)->tod; } #ifdef STANDALONE uint bt_audit (BtDb *bt) { ushort idx, hashidx; uid next, page_no; BtLatchSet *latch; uint cnt = 0; BtKey ptr; #ifdef unix posix_fadvise( bt->idx, 0, 0, POSIX_FADV_SEQUENTIAL); #endif if( *(ushort *)(bt->latchmgr->lock) ) fprintf(stderr, "Alloc page locked\n"); *(ushort *)(bt->latchmgr->lock) = 0; for( idx = 1; idx <= bt->latchmgr->latchdeployed; idx++ ) { latch = bt->latchsets + idx; if( *(ushort *)latch->readwr ) fprintf(stderr, "latchset %d rwlocked for page %.8x\n", idx, latch->page_no); *(ushort *)latch->readwr = 0; if( *(ushort *)latch->access ) fprintf(stderr, "latchset %d accesslocked for page %.8x\n", idx, latch->page_no); *(ushort *)latch->access = 0; if( *(ushort *)latch->parent ) fprintf(stderr, "latchset %d parentlocked for page %.8x\n", idx, latch->page_no); *(ushort *)latch->parent = 0; if( latch->pin ) { fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no); latch->pin = 0; } } for( hashidx = 0; hashidx < bt->latchmgr->latchhash; hashidx++ ) { if( *(ushort *)(bt->latchmgr->table[hashidx].latch) ) fprintf(stderr, "hash entry %d locked\n", hashidx); *(ushort *)(bt->latchmgr->table[hashidx].latch) = 0; if( idx = bt->latchmgr->table[hashidx].slot ) do { latch = bt->latchsets + idx; if( *(ushort *)latch->busy ) fprintf(stderr, "latchset %d busylocked for page %.8x\n", idx, latch->page_no); *(ushort *)latch->busy = 0; if( latch->hash != hashidx ) fprintf(stderr, "latchset %d wrong hashidx\n", idx); if( latch->pin ) fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no); } while( idx = latch->next ); } next = bt->latchmgr->nlatchpage + LATCH_page; page_no = LEAF_page; while( page_no < bt_getid(bt->latchmgr->alloc->right) ) { off64_t off = page_no << bt->page_bits; #ifdef unix pread (bt->idx, bt->frame, bt->page_size, off); #else DWORD amt[1]; SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !ReadFile(bt->idx, bt->frame, bt->page_size, amt, NULL)) fprintf(stderr, "page %.8x unable to read\n", page_no); if( *amt < bt->page_size ) fprintf(stderr, "page %.8x unable to read\n", page_no); #endif if( !bt->frame->free ) { for( idx = 0; idx++ < bt->frame->cnt - 1; ) { ptr = keyptr(bt->frame, idx+1); if( keycmp (keyptr(bt->frame, idx), ptr->key, ptr->len) >= 0 ) fprintf(stderr, "page %.8x idx %.2x out of order\n", page_no, idx); } if( !bt->frame->lvl ) cnt += bt->frame->act; } if( page_no > LEAF_page ) next = page_no + 1; page_no = next; } return cnt - 1; } #ifndef unix double getCpuTime(int type) { FILETIME crtime[1]; FILETIME xittime[1]; FILETIME systime[1]; FILETIME usrtime[1]; SYSTEMTIME timeconv[1]; double ans = 0; memset (timeconv, 0, sizeof(SYSTEMTIME)); switch( type ) { case 0: GetSystemTimeAsFileTime (xittime); FileTimeToSystemTime (xittime, timeconv); ans = (double)timeconv->wDayOfWeek * 3600 * 24; break; case 1: GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); FileTimeToSystemTime (usrtime, timeconv); break; case 2: GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); FileTimeToSystemTime (systime, timeconv); break; } ans += (double)timeconv->wHour * 3600; ans += (double)timeconv->wMinute * 60; ans += (double)timeconv->wSecond; ans += (double)timeconv->wMilliseconds / 1000; return ans; } #else #include #include double getCpuTime(int type) { struct rusage used[1]; struct timeval tv[1]; switch( type ) { case 0: gettimeofday(tv, NULL); return (double)tv->tv_sec + (double)tv->tv_usec / 1000000; case 1: getrusage(RUSAGE_SELF, used); return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000; case 2: getrusage(RUSAGE_SELF, used); return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000; } return 0; } #endif // standalone program to index file of keys // then list them onto std-out int main (int argc, char **argv) { uint slot, line = 0, off = 0, found = 0; int ch, cnt = 0, bits = 12; unsigned char key[256]; double done, start; uid next, page_no; uint pgblk = 0; float elapsed; time_t tod[1]; uint scan = 0; uint len = 0; uint map = 0; BtKey ptr; BtDb *bt; FILE *in; if( argc < 4 ) { fprintf (stderr, "Usage: %s idx_file src_file Read/Write/Scan/Delete/Find [page_bits mapped_pool_segments pages_per_segment start_line_number]\n", argv[0]); fprintf (stderr, " page_bits: size of btree page in bits\n"); fprintf (stderr, " mapped_pool_segments: size of buffer pool in segments\n"); fprintf (stderr, " pages_per_segment: size of buffer pool segment in pages in bits\n"); exit(0); } start = getCpuTime(0); time(tod); if( argc > 4 ) bits = atoi(argv[4]); if( argc > 5 ) map = atoi(argv[5]); if( map > 65536 ) fprintf (stderr, "Warning: buffer_pool > 65536 segments\n"); if( map && map < 8 ) fprintf (stderr, "Buffer_pool too small\n"); if( argc > 6 ) pgblk = atoi(argv[6]); if( bits + pgblk > 30 ) fprintf (stderr, "Warning: very large buffer pool segment size\n"); if( argc > 7 ) off = atoi(argv[7]); bt = bt_open ((argv[1]), BT_rw, bits, map, pgblk, map / 8); if( !bt ) { fprintf(stderr, "Index Open Error %s\n", argv[1]); exit (1); } switch(argv[3][0]| 0x20) { case 'a': fprintf(stderr, "started audit for %s\n", argv[2]); cnt = bt_audit (bt); fprintf(stderr, "finished audit for %s, %d keys\n", argv[2], cnt); break; case 'w': fprintf(stderr, "started indexing for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; if( bt_insertkey (bt, key, len, 0, ++line, *tod) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished adding keys for %s, %d \n", argv[2], line); break; case 'd': fprintf(stderr, "started deleting keys for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; line++; if( bt_deletekey (bt, key, len, 0) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished deleting keys for %s, %d \n", argv[2], line); break; case 'f': fprintf(stderr, "started finding keys for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; line++; if( bt_findkey (bt, key, len) ) found++; else if( bt->err ) fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished search of %d keys for %s, found %d\n", line, argv[2], found); break; case 's': fprintf(stderr, "started scaning\n"); cnt = len = key[0] = 0; if( slot = bt_startkey (bt, key, len) ) slot--; else fprintf(stderr, "Error %d in StartKey. Syserror: %d\n", bt->err, errno), exit(0); while( slot = bt_nextkey (bt, slot) ) { ptr = bt_key(bt, slot); fwrite (ptr->key, ptr->len, 1, stdout); fputc ('\n', stdout); cnt++; } fprintf(stderr, " Total keys read %d\n", cnt - 1); break; case 'c': fprintf(stderr, "started counting\n"); next = bt->latchmgr->nlatchpage + LATCH_page; page_no = LEAF_page; cnt = 0; while( page_no < bt_getid(bt->latchmgr->alloc->right) ) { uid off = page_no << bt->page_bits; #ifdef unix pread (bt->idx, bt->frame, bt->page_size, off); #else DWORD amt[1]; SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !ReadFile(bt->idx, bt->frame, bt->page_size, amt, NULL)) fprintf (stderr, "unable to read page %.8x", page_no); if( *amt < bt->page_size ) fprintf (stderr, "unable to read page %.8x", page_no); #endif if( !bt->frame->free && !bt->frame->lvl ) cnt += bt->frame->act; if( page_no > LEAF_page ) next = page_no + 1; page_no = next; } cnt--; // remove stopper key fprintf(stderr, " Total keys read %d\n", cnt); break; } done = getCpuTime(0); elapsed = (float)(done - start); fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); elapsed = getCpuTime(1); fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); elapsed = getCpuTime(2); fprintf(stderr, " sys %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); return 0; } #endif //STANDALONE