// foster btree // 26 MAY 2013 // author: karl malbrain, malbrain@cal.berkeley.edu /* This work, including the source code, documentation and related data, is placed into the public domain. The orginal author is Karl Malbrain. THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE, ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE RESULTING FROM THE USE, MODIFICATION, OR REDISTRIBUTION OF THIS SOFTWARE. */ // Please see the project home page for documentation // code.google.com/p/high-concurrency-btree #define _FILE_OFFSET_BITS 64 #define _LARGEFILE64_SOURCE #ifdef linux #define _GNU_SOURCE #endif #ifdef unix #include #include #include #include #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #include #include #include #include #include #include #endif #include #include typedef unsigned long long uid; #ifndef unix typedef unsigned long long off64_t; typedef unsigned short ushort; typedef unsigned int uint; #endif #define BT_ro 0x6f72 // ro #define BT_rw 0x7772 // rw #define BT_maxbits 24 // maximum page size in bits #define BT_minbits 9 // minimum page size in bits #define BT_minpage (1 << BT_minbits) // minimum page size #define BT_maxpage (1 << BT_maxbits) // maximum page size /* There are five lock types for each node in three independent sets: 1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. 2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. 5. (set 3) ParentLock: Exclusive. Have parent adopt/delete maximum foster child from the node. */ typedef enum{ BtLockAccess, BtLockDelete, BtLockRead, BtLockWrite, BtLockParent }BtLock; // Define the length of the page and key pointers #define BtId 6 // Page key slot definition. // If BT_maxbits is 15 or less, you can save 4 bytes // for each key stored by making the first two uints // into ushorts. You can also save 4 bytes by removing // the tod field from the key. // Keys are marked dead, but remain on the page until // it cleanup is called. The fence key (highest key) for // the page is always present, even after cleanup. typedef struct { uint off:BT_maxbits; // page offset for key start uint dead:1; // set for deleted key uint tod; // time-stamp for key unsigned char id[BtId]; // id associated with key } BtSlot; // The key structure occupies space at the upper end of // each page. It's a length byte followed by the value // bytes. typedef struct { unsigned char len; unsigned char key[1]; } *BtKey; // The first part of an index page. // It is immediately followed // by the BtSlot array of keys. typedef struct Page { uint cnt; // count of keys in page uint act; // count of active keys uint min; // next key offset uint foster; // count of foster children unsigned char bits:7; // page size in bits unsigned char kill:1; // page is being deleted unsigned char lvl; // level of page unsigned char right[BtId]; // page number to right } *BtPage; // mode & definition for latch table implementation enum { Write = 1, Share = 2 } LockMode; // latch table lock structure // mode is set for write access // share is count of read accessors // grant write lock when share == 0 typedef struct { int mode:1; int share:31; } BtLatch; typedef struct { BtLatch readwr[1]; // read/write page lock BtLatch access[1]; // Access Intent/Page delete BtLatch parent[1]; // adoption of foster children } BtLatchSet; // The memory mapping hash table buffer manager entry typedef struct { unsigned long long int lru; // number of times accessed uid basepage; // mapped base page number char *map; // mapped memory pointer uint pin; // mapped page pin counter uint slot; // slot index in this array void *hashprev; // previous cache block for the same hash idx void *hashnext; // next cache block for the same hash idx #ifndef unix HANDLE hmap; #endif // array of page latch sets, one for each page in map segment BtLatchSet pagelatch[0]; } BtHash; // The object structure for Btree access typedef struct { uint page_size; // page size uint page_bits; // page size in bits uint seg_bits; // seg size in pages in bits uint mode; // read-write mode #ifdef unix int idx; #else HANDLE idx; #endif uint nodecnt; // highest page cache node in use uint nodemax; // highest page cache node allocated uint hashmask; // number of pages in mmap segment uint hashsize; // size of Hash Table uint evicted; // last evicted hash slot ushort *cache; // hash index for memory pool BtLatch *latch; // latches for hash table slots char *nodes; // memory pool page hash nodes } BtMgr; typedef struct { BtMgr *mgr; // buffer manager for thread BtPage temp; // temporary frame buffer (memory mapped/file IO) BtPage alloc; // frame buffer for alloc page ( page 0 ) BtPage cursor; // cached frame for start/next (never mapped) BtPage frame; // spare frame for the page split (never mapped) BtPage zero; // page frame for zeroes at end of file BtPage page; // current page uid page_no; // current page number uid cursor_page; // current cursor page number unsigned char *mem; // frame, cursor, page memory buffer int err; // last error } BtDb; typedef enum { BTERR_ok = 0, BTERR_again, BTERR_struct, BTERR_ovflw, BTERR_lock, BTERR_map, BTERR_wrt, BTERR_hash } BTERR; // B-Tree functions extern void bt_close (BtDb *bt); extern BtDb *bt_open (BtMgr *mgr); extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod); extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl); extern uid bt_findkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_startkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_nextkey (BtDb *bt, uint slot); // manager functions extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint cacheblk, uint segsize, uint hashsize); void bt_mgrclose (BtMgr *mgr); // Helper functions to return cursor slot values extern BtKey bt_key (BtDb *bt, uint slot); extern uid bt_uid (BtDb *bt, uint slot); extern uint bt_tod (BtDb *bt, uint slot); // BTree page number constants #define ALLOC_page 0 #define ROOT_page 1 // Number of levels to create in a new BTree #define MIN_lvl 2 // The page is allocated from low and hi ends. // The key offsets and row-id's are allocated // from the bottom, while the text of the key // is allocated from the top. When the two // areas meet, the page is split into two. // A key consists of a length byte, two bytes of // index number (0 - 65534), and up to 253 bytes // of key value. Duplicate keys are discarded. // Associated with each key is a 48 bit row-id. // The b-tree root is always located at page 1. // The first leaf page of level zero is always // located on page 2. // When to root page fills, it is split in two and // the tree height is raised by a new root at page // one with two keys. // Deleted keys are marked with a dead bit until // page cleanup The fence key for a node is always // present, even after deletion and cleanup. // Groups of pages called segments from the btree are // cached with memory mapping. A hash table is used to keep // track of the cached segments. This behaviour is controlled // by the cache block size parameter to bt_open. // To achieve maximum concurrency one page is locked at a time // as the tree is traversed to find leaf key in question. // An adoption traversal leaves the parent node locked as the // tree is traversed to the level in quesiton. // Page 0 is dedicated to lock for new page extensions, // and chains empty pages together for reuse. // Empty pages are chained together through the ALLOC page and reused. // Access macros to address slot and key values from the page #define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1)) #define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off)) void bt_putid(unsigned char *dest, uid id) { int i = BtId; while( i-- ) dest[i] = (unsigned char)id, id >>= 8; } uid bt_getid(unsigned char *src) { uid id = 0; int i; for( i = 0; i < BtId; i++ ) id <<= 8, id |= *src++; return id; } void bt_mgrclose (BtMgr *mgr) { BtHash *hash; uint slot; // release mapped pages for( slot = 0; slot < mgr->nodemax; slot++ ) { hash = (BtHash *)(mgr->nodes + slot * (sizeof(BtHash) + (mgr->hashmask + 1) * sizeof(BtLatchSet))); if( hash->slot ) #ifdef unix munmap (hash->map, (mgr->hashmask+1) << mgr->page_bits); #else { FlushViewOfFile(hash->map, 0); UnmapViewOfFile(hash->map); CloseHandle(hash->hmap); } #endif } #ifdef unix close (mgr->idx); free (mgr->nodes); free (mgr->cache); free (mgr->latch); #else FlushFileBuffers(mgr->idx); CloseHandle(mgr->idx); GlobalFree (mgr->nodes); GlobalFree (mgr->cache); GlobalFree (mgr->latch); #endif } // close and release memory void bt_close (BtDb *bt) { #ifdef unix if ( bt->mem ) free (bt->mem); free (bt); #else if ( bt->mem) VirtualFree (bt->mem, 0, MEM_RELEASE); GlobalFree (bt); #endif } // open/create new btree buffer manager // call with file_name, BT_openmode, bits in page size (e.g. 16), // size of mapped page cache (e.g. 8192) BtMgr *bt_mgr (char *name, uint mode, uint bits, uint nodemax, uint segsize, uint hashsize) { uint lvl, attr, cacheblk, last; BtPage alloc; int lockmode; off64_t size; uint amt[1]; BtMgr* mgr; BtKey key; #ifndef unix SYSTEM_INFO sysinfo[1]; #endif // determine sanity of page size and buffer pool if( bits > BT_maxbits ) bits = BT_maxbits; else if( bits < BT_minbits ) bits = BT_minbits; if( !nodemax ) return NULL; // must have buffer pool #ifdef unix mgr = calloc (1, sizeof(BtMgr)); switch (mode & 0x7fff) { case BT_rw: mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); lockmode = 1; break; case BT_ro: default: mgr->idx = open ((char*)name, O_RDONLY); lockmode = 0; break; } if( mgr->idx == -1 ) return free(mgr), NULL; cacheblk = 4096; // minimum mmap segment size for unix #else mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr)); attr = FILE_ATTRIBUTE_NORMAL; switch (mode & 0x7fff) { case BT_rw: mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL); lockmode = 1; break; case BT_ro: default: mgr->idx = CreateFile(name, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, attr, NULL); lockmode = 0; break; } if( mgr->idx == INVALID_HANDLE_VALUE ) return GlobalFree(mgr), NULL; // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity GetSystemInfo(sysinfo); cacheblk = sysinfo->dwAllocationGranularity; #endif #ifdef unix alloc = malloc (BT_maxpage); *amt = 0; // read minimum page size to get root info if( size = lseek (mgr->idx, 0L, 2) ) { if( pread(mgr->idx, alloc, BT_minpage, 0) == BT_minpage ) bits = alloc->bits; else return free(mgr), free(alloc), NULL; } else if( mode == BT_ro ) return bt_mgrclose (mgr), NULL; #else alloc = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE); size = GetFileSize(mgr->idx, amt); if( size || *amt ) { if( !ReadFile(mgr->idx, (char *)alloc, BT_minpage, amt, NULL) ) return bt_mgrclose (mgr), NULL; bits = alloc->bits; } else if( mode == BT_ro ) return bt_mgrclose (mgr), NULL; #endif mgr->page_size = 1 << bits; mgr->page_bits = bits; mgr->nodemax = nodemax; mgr->mode = mode; if( cacheblk < mgr->page_size ) cacheblk = mgr->page_size; // mask for partial memmaps mgr->hashmask = (cacheblk >> bits) - 1; // see if requested number of pages per memmap is greater if( (1 << segsize) > mgr->hashmask ) mgr->hashmask = (1 << segsize) - 1; mgr->seg_bits = 0; while( (1 << mgr->seg_bits) <= mgr->hashmask ) mgr->seg_bits++; mgr->hashsize = hashsize; #ifdef unix mgr->nodes = calloc (cacheblk, (sizeof(BtHash) + (mgr->hashmask + 1) * sizeof(BtLatchSet))); mgr->cache = calloc (hashsize, sizeof(ushort)); mgr->latch = calloc (hashsize, sizeof(BtLatch)); #else mgr->nodes = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cacheblk * (sizeof(BtHash) + (mgr->hashmask + 1) * sizeof(BtLatchSet))); mgr->cache = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort)); mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtLatch)); #endif if( size || *amt ) goto mgrxit; // initializes an empty b-tree with root page and page of leaves memset (alloc, 0, 1 << bits); bt_putid(slotptr(alloc, 2)->id, MIN_lvl+1); alloc->bits = mgr->page_bits; #ifdef unix if( write (mgr->idx, alloc, mgr->page_size) < mgr->page_size ) return bt_mgrclose (mgr), NULL; #else if( !WriteFile (mgr->idx, (char *)alloc, mgr->page_size, amt, NULL) ) return bt_mgrclose (mgr), NULL; if( *amt < mgr->page_size ) return bt_mgrclose (mgr), NULL; #endif memset (alloc, 0, 1 << bits); alloc->bits = mgr->page_bits; for( lvl=MIN_lvl; lvl--; ) { slotptr(alloc, 1)->off = mgr->page_size - 3; bt_putid(slotptr(alloc, 1)->id, lvl ? MIN_lvl - lvl + 1 : 0); // next(lower) page number key = keyptr(alloc, 1); key->len = 2; // create stopper key key->key[0] = 0xff; key->key[1] = 0xff; alloc->min = mgr->page_size - 3; alloc->lvl = lvl; alloc->cnt = 1; alloc->act = 1; #ifdef unix if( write (mgr->idx, alloc, mgr->page_size) < mgr->page_size ) return bt_mgrclose (mgr), NULL; #else if( !WriteFile (mgr->idx, (char *)alloc, mgr->page_size, amt, NULL) ) return bt_mgrclose (mgr), NULL; if( *amt < mgr->page_size ) return bt_mgrclose (mgr), NULL; #endif } // create empty page area by writing last page of first // cache area (other pages are zeroed by O/S) if( mgr->hashmask ) { memset(alloc, 0, mgr->page_size); last = mgr->hashmask; while( last < MIN_lvl + 1 ) last += mgr->hashmask + 1; #ifdef unix pwrite(mgr->idx, alloc, mgr->page_size, last << mgr->page_bits); #else SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN); if( !WriteFile (mgr->idx, (char *)alloc, mgr->page_size, amt, NULL) ) return bt_mgrclose (mgr), NULL; if( *amt < mgr->page_size ) return bt_mgrclose (mgr), NULL; #endif } mgrxit: #ifdef unix free (alloc); #else VirtualFree (alloc, 0, MEM_RELEASE); #endif return mgr; } // open BTree access method // based on buffer manager BtDb *bt_open (BtMgr *mgr) { BtDb *bt = malloc (sizeof(*bt)); memset (bt, 0, sizeof(*bt)); bt->mgr = mgr; #ifdef unix bt->mem = malloc (3 *mgr->page_size); #else bt->mem = VirtualAlloc(NULL, 3 * mgr->page_size, MEM_COMMIT, PAGE_READWRITE); #endif bt->frame = (BtPage)bt->mem; bt->zero = (BtPage)(bt->mem + 1 * mgr->page_size); bt->cursor = (BtPage)(bt->mem + 2 * mgr->page_size); return bt; } // compare two keys, returning > 0, = 0, or < 0 // as the comparison value int keycmp (BtKey key1, unsigned char *key2, uint len2) { uint len1 = key1->len; int ans; if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) ) return ans; if( len1 > len2 ) return 1; if( len1 < len2 ) return -1; return 0; } // Latch Manager // wait until write lock mode is clear // and add 1 to the share count void bt_readlock(BtLatch *latch) { do { // add one to counter, check write bit #ifdef unix if( ~__sync_fetch_and_add((int *)latch, Share) & Write ) return; #else if( ~InterlockedAdd((int *)latch, Share) & Write ) return; #endif // didn't get latch, reset counter by one #ifdef unix __sync_fetch_and_add((int *)latch, -Share); #else InterlockedAdd ((int *)latch, -Share); #endif // and yield #ifdef unix sched_yield(); #else SwitchToThread(); #endif } while( 1 ); } // wait for other read and write latches to relinquish void bt_writelock(BtLatch *latch) { int prev, ours = 0; do { // see if we can get write access // with no readers #ifdef unix prev = __sync_fetch_and_or((int *)latch, Write); #else prev = InterlockedOr((int *)latch, Write); #endif if( ~prev & 1 ) ours++; // it's ours if( !(prev >> 1) && ours ) return; // otherwise yield #ifdef unix sched_yield(); #else SwitchToThread(); #endif } while( 1 ); } // try to obtain write lock // return 1 if obtained, // 0 if already write locked int bt_writetry(BtLatch *latch) { int prev, ours = 0; do { // see if we can get write access // with no readers #ifdef unix prev = __sync_fetch_and_or((int *)latch, Write); #else prev = InterlockedOr((int *)latch, Write); #endif if( ~prev & 1 ) ours++; // it's ours if( !ours ) return 0; if( !(prev >> 1) && ours ) return 1; // otherwise yield #ifdef unix sched_yield(); #else SwitchToThread(); #endif } while( 1 ); } // clear write mode void bt_releasewrite(BtLatch *latch) { #ifdef unix __sync_fetch_and_and((int *)latch, ~Write); #else InterlockedAnd ((int *)latch, ~Write); #endif } // decrement reader count void bt_releaseread(BtLatch *latch) { #ifdef unix __sync_fetch_and_add((int *)latch, -Share); #else InterlockedAdd((int *)latch, -Share); #endif } // Buffer Pool mgr // find segment in cache // return NULL if not there // otherwise return node BtHash *bt_findhash(BtDb *bt, uid page_no, uint idx) { BtHash *hash; uint slot; // compute cache block first page and hash idx if( slot = bt->mgr->cache[idx] ) hash = (BtHash *)(bt->mgr->nodes + slot * (sizeof(BtHash) + (bt->mgr->hashmask + 1) * sizeof(BtLatchSet))); else return NULL; page_no &= ~bt->mgr->hashmask; while( hash->basepage != page_no ) if( hash = hash->hashnext ) continue; else return NULL; return hash; } // add segment to hash table void bt_linkhash(BtDb *bt, BtHash *hash, uid page_no, int idx) { BtHash *node; uint slot; hash->hashprev = hash->hashnext = NULL; hash->basepage = page_no & ~bt->mgr->hashmask; hash->pin = 1; hash->lru = 1; if( slot = bt->mgr->cache[idx] ) { node = (BtHash *)(bt->mgr->nodes + slot * (sizeof(BtHash) + (bt->mgr->hashmask + 1) * sizeof(BtLatchSet))); hash->hashnext = node; node->hashprev = hash; } bt->mgr->cache[idx] = hash->slot; } // find best segment to evict from buffer pool BtHash *bt_findlru (BtDb *bt, uint slot) { unsigned long long int target = ~0LL; BtHash *hash = NULL, *node; if( !slot ) return NULL; node = (BtHash *)(bt->mgr->nodes + slot * (sizeof(BtHash) + (bt->mgr->hashmask + 1) * sizeof(BtLatchSet))); do { if( node->pin ) continue; if( node->lru > target ) continue; target = node->lru; hash = node; } while( node = node->hashnext ); return hash; } // map new segment to virtual memory BTERR bt_mapsegment(BtDb *bt, BtHash *hash, uid page_no) { off64_t off = (page_no & ~bt->mgr->hashmask) << bt->mgr->page_bits; off64_t limit = off + ((bt->mgr->hashmask+1) << bt->mgr->page_bits); int flag; #ifdef unix flag = PROT_READ | ( bt->mgr->mode == BT_ro ? 0 : PROT_WRITE ); hash->map = mmap (0, (bt->mgr->hashmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off); if( hash->map == MAP_FAILED ) return bt->err = BTERR_map; #else flag = ( bt->mgr->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE ); hash->hmap = CreateFileMapping(bt->mgr->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL); if( !hash->hmap ) return bt->err = BTERR_map; flag = ( bt->mgr->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE ); hash->map = MapViewOfFile(hash->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (bt->mgr->hashmask+1) << bt->mgr->page_bits); if( !hash->map ) return bt->err = BTERR_map; #endif return bt->err = 0; } // find or place requested page in segment-cache // return hash table entry BtHash *bt_hashpage(BtDb *bt, uid page_no) { BtHash *hash, *node, *next; uint slot, idx, victim; BtLatchSet *set; // lock hash table chain idx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize; bt_readlock (&bt->mgr->latch[idx]); // look up in hash table if( hash = bt_findhash(bt, page_no, idx) ) { #ifdef unix __sync_fetch_and_add(&hash->pin, 1); #else InterlockedIncrement (&hash->pin); #endif bt_releaseread (&bt->mgr->latch[idx]); hash->lru++; return hash; } // upgrade to write lock bt_releaseread (&bt->mgr->latch[idx]); bt_writelock (&bt->mgr->latch[idx]); // try to find page in cache with write lock if( hash = bt_findhash(bt, page_no, idx) ) { #ifdef unix __sync_fetch_and_add(&hash->pin, 1); #else InterlockedIncrement (&hash->pin); #endif bt_releasewrite (&bt->mgr->latch[idx]); hash->lru++; return hash; } // allocate a new hash node // and add to hash table #ifdef unix slot = __sync_fetch_and_add(&bt->mgr->nodecnt, 1); #else slot = InterlockedIncrement (&bt->mgr->nodecnt) - 1; #endif if( ++slot < bt->mgr->nodemax ) { hash = (BtHash *)(bt->mgr->nodes + slot * (sizeof(BtHash) + (bt->mgr->hashmask + 1) * sizeof(BtLatchSet))); hash->slot = slot; if( bt_mapsegment(bt, hash, page_no) ) return NULL; bt_linkhash(bt, hash, page_no, idx); bt_releasewrite (&bt->mgr->latch[idx]); return hash; } // hash table is full // find best cache entry to evict #ifdef unix __sync_fetch_and_add(&bt->mgr->nodecnt, -1); #else InterlockedDecrement (&bt->mgr->nodecnt); #endif while( 1 ) { #ifdef unix victim = __sync_fetch_and_add(&bt->mgr->evicted, 1); #else victim = InterlockedIncrement (&bt->mgr->evicted) - 1; #endif victim %= bt->mgr->hashsize; // try to get write lock // skip entry if not obtained if( !bt_writetry (&bt->mgr->latch[victim]) ) continue; // if cache entry is empty // or no slots are unpinned // skip this entry if( !(hash = bt_findlru(bt, bt->mgr->cache[victim])) ) { bt_releasewrite (&bt->mgr->latch[victim]); continue; } // unlink victim hash node from hash table if( node = hash->hashprev ) node->hashnext = hash->hashnext; else if( node = hash->hashnext ) bt->mgr->cache[victim] = node->slot; else bt->mgr->cache[victim] = 0; if( node = hash->hashnext ) node->hashprev = hash->hashprev; // remove old file mapping #ifdef unix munmap (hash->map, (bt->mgr->hashmask+1) << bt->mgr->page_bits); #else FlushViewOfFile(hash->map, 0); UnmapViewOfFile(hash->map); CloseHandle(hash->hmap); #endif hash->map = NULL; bt_releasewrite (&bt->mgr->latch[victim]); // create new file mapping // and link into hash table if( bt_mapsegment(bt, hash, page_no) ) return NULL; bt_linkhash(bt, hash, page_no, idx); bt_releasewrite (&bt->mgr->latch[idx]); return hash; } } // place write, read, or parent lock on requested page_no. // pin to buffer pool BTERR bt_lockpage(BtDb *bt, uid page_no, BtLock mode, BtPage *page) { BtLatchSet *set; BtHash *hash; uint subpage; // find/create maping in hash table if( hash = bt_hashpage(bt, page_no) ) subpage = (uint)(page_no & bt->mgr->hashmask); // page within mapping else return bt->err; set = hash->pagelatch + subpage; switch( mode ) { case BtLockRead: bt_readlock (set->readwr); break; case BtLockWrite: bt_writelock (set->readwr); break; case BtLockAccess: bt_readlock (set->access); break; case BtLockDelete: bt_writelock (set->access); break; case BtLockParent: bt_writelock (set->parent); break; default: return bt->err = BTERR_lock; } if( page ) *page = (BtPage)(hash->map + (subpage << bt->mgr->page_bits)); return bt->err = 0; } // remove write, read, or parent lock on requested page_no. BTERR bt_unlockpage(BtDb *bt, uid page_no, BtLock mode) { uint subpage, idx; BtLatchSet *set; BtHash *hash; // since page is pinned // it should still be in the buffer pool idx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize; bt_readlock (&bt->mgr->latch[idx]); if( hash = bt_findhash(bt, page_no, idx) ) subpage = (uint)(page_no & bt->mgr->hashmask); else return bt->err = BTERR_hash; bt_releaseread (&bt->mgr->latch[idx]); set = hash->pagelatch + subpage; switch( mode ) { case BtLockRead: bt_releaseread (set->readwr); break; case BtLockWrite: bt_releasewrite (set->readwr); break; case BtLockAccess: bt_releaseread (set->access); break; case BtLockDelete: bt_releasewrite (set->access); break; case BtLockParent: bt_releasewrite (set->parent); break; default: return bt->err = BTERR_lock; } #ifdef unix __sync_fetch_and_add(&hash->pin, -1); #else InterlockedDecrement (&hash->pin); #endif return bt->err = 0; } // deallocate a deleted page that has no tree pointers // place on free chain out of allocator page BTERR bt_freepage(BtDb *bt, uid page_no) { // obtain delete lock on deleted page if( bt_lockpage(bt, page_no, BtLockDelete, NULL) ) return bt->err; // obtain write lock on deleted page if( bt_lockpage(bt, page_no, BtLockWrite, &bt->temp) ) return bt->err; // lock allocation page if ( bt_lockpage(bt, ALLOC_page, BtLockWrite, &bt->alloc) ) return bt->err; // store chain in first key bt_putid(slotptr(bt->temp, 1)->id, bt_getid(slotptr(bt->alloc, 1)->id)); bt_putid(slotptr(bt->alloc, 1)->id, page_no); // unlock page zero if( bt_unlockpage(bt, ALLOC_page, BtLockWrite) ) return bt->err; // remove write lock on deleted node if( bt_unlockpage(bt, page_no, BtLockWrite) ) return bt->err; // remove delete lock on deleted node if( bt_unlockpage(bt, page_no, BtLockDelete) ) return bt->err; return 0; } // allocate a new page and write page into it uid bt_newpage(BtDb *bt, BtPage page) { uid new_page; BtPage pmap; int reuse; // lock page zero if ( bt_lockpage(bt, ALLOC_page, BtLockWrite, &bt->alloc) ) return 0; // use empty chain first // else allocate empty page if( new_page = bt_getid(slotptr(bt->alloc, 1)->id) ) { if( bt_lockpage (bt, new_page, BtLockWrite, &bt->temp) ) return 0; bt_putid(slotptr(bt->alloc, 1)->id, bt_getid(slotptr(bt->temp, 1)->id)); if( bt_unlockpage (bt, new_page, BtLockWrite) ) return 0; reuse = 1; } else { new_page = bt_getid(slotptr(bt->alloc, 2)->id); bt_putid(slotptr(bt->alloc, 2)->id, new_page+1); reuse = 0; } #ifdef unix if ( pwrite(bt->mgr->idx, page, bt->mgr->page_size, new_page << bt->mgr->page_bits) < bt->mgr->page_size ) return bt->err = BTERR_wrt, 0; // if writing first page of hash block, zero last page in the block if ( !reuse && bt->mgr->hashmask > 0 && (new_page & bt->mgr->hashmask) == 0 ) { // use zero buffer to write zeros memset(bt->zero, 0, bt->mgr->page_size); if ( pwrite(bt->mgr->idx,bt->zero, bt->mgr->page_size, (new_page | bt->mgr->hashmask) << bt->mgr->page_bits) < bt->mgr->page_size ) return bt->err = BTERR_wrt, 0; } #else // bring new page into page-cache and copy page. // this will extend the file into the new pages. if( bt_lockpage(bt, new_page, BtLockWrite, &pmap) ) return 0; memcpy(pmap, page, bt->mgr->page_size); if( bt_unlockpage (bt, new_page, BtLockWrite) ) return 0; #endif // unlock page zero if ( bt_unlockpage(bt, ALLOC_page, BtLockWrite) ) return 0; return new_page; } // find slot in page for given key at a given level int bt_findslot (BtDb *bt, unsigned char *key, uint len) { uint diff, higher = bt->page->cnt, low = 1, slot; // low is the lowest candidate, higher is already // tested as .ge. the given key, loop ends when they meet while( diff = higher - low ) { slot = low + ( diff >> 1 ); if( keycmp (keyptr(bt->page, slot), key, len) < 0 ) low = slot + 1; else higher = slot; } return higher; } // find and load page at given level for given key // leave page rd or wr locked as requested int bt_loadpage (BtDb *bt, unsigned char *key, uint len, uint lvl, uint lock) { uid page_no = ROOT_page, prevpage = 0; uint drill = 0xff, slot; uint mode, prevmode; // start at root of btree and drill down do { // determine lock mode of drill level mode = (lock == BtLockWrite) && (drill == lvl) ? BtLockWrite : BtLockRead; bt->page_no = page_no; // obtain access lock using lock chaining with Access mode if( page_no > ROOT_page ) if( bt_lockpage(bt, page_no, BtLockAccess, NULL) ) return 0; if( prevpage ) if( bt_unlockpage(bt, prevpage, prevmode) ) return 0; // obtain read lock using lock chaining // and pin page contents if( bt_lockpage(bt, page_no, mode, &bt->page) ) return 0; if( page_no > ROOT_page ) if( bt_unlockpage(bt, page_no, BtLockAccess) ) return 0; // re-read and re-lock root after determining actual level of root if( bt->page_no == ROOT_page ) if( bt->page->lvl != drill) { drill = bt->page->lvl; if( lock == BtLockWrite && drill == lvl ) if( bt_unlockpage(bt, page_no, mode) ) return 0; else continue; } // if page is being deleted, // move back to preceeding page if( bt->page->kill ) { page_no = bt_getid (bt->page->right); continue; } // find key on page at this level // and descend to requested level slot = bt_findslot (bt, key, len); // is this slot a foster child? if( slot <= bt->page->cnt - bt->page->foster ) if( drill == lvl ) return slot; else drill--; while( slotptr(bt->page, slot)->dead ) if( slot++ < bt->page->cnt ) continue; else return bt->err = BTERR_struct, 0; // continue down / right using overlapping locks // to protect pages being killed or split. prevmode = mode; prevpage = bt->page_no; page_no = bt_getid(slotptr(bt->page, slot)->id); } while( page_no ); // return error on end of chain bt->err = BTERR_struct; return 0; // return error } // find and delete key on page by marking delete flag bit // when page becomes empty, delete it from the btree BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl) { unsigned char leftkey[256], rightkey[256]; uid page_no, right; uint slot, tod; BtKey ptr; if( slot = bt_loadpage (bt, key, len, lvl, BtLockWrite) ) ptr = keyptr(bt->page, slot); else return bt->err; // if key is found delete it, otherwise ignore request if( !keycmp (ptr, key, len) ) if( slotptr(bt->page, slot)->dead == 0 ) slotptr(bt->page,slot)->dead = 1, bt->page->act--; // return if page is not empty, or it has no right sibling right = bt_getid(bt->page->right); page_no = bt->page_no; if( !right || bt->page->act ) return bt_unlockpage(bt, page_no, BtLockWrite); // obtain Parent lock over write lock if( bt_lockpage(bt, page_no, BtLockParent, NULL) ) return bt->err; // cache copy of key to delete ptr = keyptr(bt->page, bt->page->cnt); memcpy(leftkey, ptr, ptr->len + 1); // lock and map right page if ( bt_lockpage(bt, right, BtLockWrite, &bt->temp) ) return bt->err; // pull contents of next page into current empty page memcpy (bt->page, bt->temp, bt->mgr->page_size); // cache copy of key to update ptr = keyptr(bt->temp, bt->temp->cnt); memcpy(rightkey, ptr, ptr->len + 1); // Mark right page as deleted and point it to left page // until we can post updates at higher level. bt_putid(bt->temp->right, page_no); bt->temp->kill = 1; bt->temp->cnt = 0; if( bt_unlockpage(bt, right, BtLockWrite) ) return bt->err; if( bt_unlockpage(bt, page_no, BtLockWrite) ) return bt->err; // delete old lower key to consolidated node if( bt_deletekey (bt, leftkey + 1, *leftkey, lvl + 1) ) return bt->err; // redirect higher key directly to consolidated node if( slot = bt_loadpage (bt, rightkey+1, *rightkey, lvl+1, BtLockWrite) ) ptr = keyptr(bt->page, slot); else return bt->err; // since key already exists, update id if( keycmp (ptr, rightkey+1, *rightkey) ) return bt->err = BTERR_struct; slotptr(bt->page, slot)->dead = 0; bt_putid(slotptr(bt->page,slot)->id, page_no); bt_unlockpage(bt, bt->page_no, BtLockWrite); // obtain write lock and // add right block to free chain if( bt_freepage (bt, right) ) return bt->err; // remove ParentModify lock if( bt_unlockpage(bt, page_no, BtLockParent) ) return bt->err; return 0; } // find key in leaf level and return row-id uid bt_findkey (BtDb *bt, unsigned char *key, uint len) { uint slot; BtKey ptr; uid id; if( slot = bt_loadpage (bt, key, len, 0, BtLockRead) ) ptr = keyptr(bt->page, slot); else return 0; // if key exists, return row-id // otherwise return 0 if( ptr->len == len && !memcmp (ptr->key, key, len) ) id = bt_getid(slotptr(bt->page,slot)->id); else id = 0; if ( bt_unlockpage(bt, bt->page_no, BtLockRead) ) return 0; return id; } void bt_cleanpage(BtDb *bt) { uint nxt = bt->mgr->page_size; BtPage page = bt->page; uint cnt = 0, idx = 0; uint max = page->cnt; BtKey key; memcpy (bt->frame, page, bt->mgr->page_size); // skip page info and set rest of page to zero memset (page+1, 0, bt->mgr->page_size - sizeof(*page)); page->act = 0; // try cleaning up page first while( cnt++ < max ) { // always leave fence key in list if( cnt < max && slotptr(bt->frame,cnt)->dead ) continue; // copy key key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); // copy slot memcpy(slotptr(page, ++idx)->id, slotptr(bt->frame, cnt)->id, BtId); if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) ) page->act++; slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; } page->min = nxt; page->cnt = idx; } // add key to page // return with page unlocked BTERR bt_addkeytopage (BtDb *bt, uint slot, unsigned char *key, uint len, uid id, uint tod) { BtPage page = bt->page; uint idx; // calculate next available slot and copy key into page page->min -= len + 1; ((unsigned char *)page)[page->min] = len; memcpy ((unsigned char *)page + page->min +1, key, len ); for( idx = slot; idx < page->cnt; idx++ ) if( slotptr(page, idx)->dead ) break; // now insert key into array before slot // preserving the fence slot if( idx == page->cnt ) idx++, page->cnt++; page->act++; while( idx > slot ) *slotptr(page, idx) = *slotptr(page, idx -1), idx--; bt_putid(slotptr(page,slot)->id, id); slotptr(page, slot)->off = page->min; slotptr(page, slot)->tod = tod; slotptr(page, slot)->dead = 0; return bt_unlockpage(bt, bt->page_no, BtLockWrite); } // split the root and raise the height of the btree BTERR bt_splitroot(BtDb *bt, uid right) { uint nxt = bt->mgr->page_size; unsigned char fencekey[256]; BtPage root = bt->page; uid new_page; BtKey key; // Obtain an empty page to use, and copy the left page // contents into it. Strip foster child key. // Save left fence key. bt->page->act--; bt->page->cnt--; bt->page->foster--; key = keyptr(bt->page, bt->page->cnt); memcpy (fencekey, key, key->len + 1); if( !(new_page = bt_newpage(bt, bt->page)) ) return bt->err; // preserve the page info at the bottom // and set rest to zero memset (root+1, 0, bt->mgr->page_size - sizeof(*root)); // insert left fence key on newroot page nxt -= *fencekey + 1; memcpy ((unsigned char *)root + nxt, fencekey, *fencekey + 1); bt_putid(slotptr(root, 1)->id, new_page); slotptr(root, 1)->off = nxt; // insert stopper key on newroot page // and increase the root height nxt -= 3; fencekey[0] = 2; fencekey[1] = 0xff; fencekey[2] = 0xff; memcpy ((unsigned char *)root + nxt, fencekey, *fencekey + 1); bt_putid(slotptr(root, 2)->id, right); slotptr(root, 2)->off = nxt; bt_putid(root->right, 0); root->min = nxt; // reset lowest used offset and key count root->cnt = 2; root->act = 2; root->lvl++; // release root (bt->page) return bt_unlockpage(bt, bt->page_no, BtLockWrite); } // split already locked full node // return unlocked. BTERR bt_splitpage (BtDb *bt, uint len) { uint slot, cnt, idx, max, nxt = bt->mgr->page_size; unsigned char fencekey[256]; uid page_no = bt->page_no; BtPage page = bt->page; uint tod = time(NULL); uint lvl = page->lvl; uid new_page, right; BtKey key; // perform cleanup bt_cleanpage(bt); // return if enough space now if( page->min >= (page->cnt + 1) * sizeof(BtSlot) + sizeof(*page) + len + 1) return bt_unlockpage(bt, page_no, BtLockWrite); // initialize frame buffer memset (bt->frame, 0, bt->mgr->page_size); max = page->cnt - page->foster; tod = (uint)time(NULL); cnt = max / 2; idx = 0; // split higher half of keys to bt->frame // leaving foster children in the left node. while( cnt++ < max ) { key = keyptr(page, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)bt->frame + nxt, key, key->len + 1); memcpy(slotptr(bt->frame,++idx)->id, slotptr(page,cnt)->id, BtId); slotptr(bt->frame, idx)->tod = slotptr(page, cnt)->tod; slotptr(bt->frame, idx)->off = nxt; bt->frame->act++; } // transfer right link node if( page_no > ROOT_page ) { right = bt_getid (page->right); bt_putid(bt->frame->right, right); } bt->frame->bits = bt->mgr->page_bits; bt->frame->min = nxt; bt->frame->cnt = idx; bt->frame->lvl = lvl; // get new free page and write frame to it. if( !(new_page = bt_newpage(bt, bt->frame)) ) return bt->err; // update lower keys and foster children to continue in old page memcpy (bt->frame, page, bt->mgr->page_size); memset (page+1, 0, bt->mgr->page_size - sizeof(*page)); nxt = bt->mgr->page_size; page->act = 0; cnt = 0; idx = 0; // assemble page of smaller keys // to remain in the old page while( cnt++ < max / 2 ) { key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); memcpy (slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; page->act++; } // assemble old foster child keys // add new foster child fence cnt = bt->frame->cnt - bt->frame->foster - 1; while( cnt++ < bt->frame->cnt ) { key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); memcpy (slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; page->act++; } // link new right page bt_putid (page->right, new_page); // put new page as smallest foster child key page->cnt = idx; cnt = page->cnt - page->foster++; bt_putid (slotptr(page,cnt)->id, new_page); // if current page is the root page, split it if( page_no == ROOT_page ) return bt_splitroot (bt, new_page); // release wr lock on page if( bt_unlockpage (bt, page_no, BtLockWrite) ) return bt->err; // obtain ParentModification lock for current page // to fix highest foster child on page if( bt_lockpage (bt, page_no, BtLockParent, NULL) ) return bt->err; if( bt_lockpage (bt, page_no, BtLockRead, &page) ) return bt->err; // get our old fence key key = keyptr(page, page->cnt); memcpy (fencekey, key, key->len+1); // get our new fence key length key = keyptr(page, page->cnt - 1); len = key->len; if( bt_unlockpage (bt, page_no, BtLockRead) ) return bt->err; do { slot = bt_loadpage (bt, fencekey + 1, *fencekey, lvl + 1, BtLockWrite); if( !slot ) return bt->err; // check if parent page has enough space if( bt->page->min < (bt->page->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->page) + len + 1) if( bt_splitpage (bt, len) ) return bt->err; else continue; else break; } while( 1 ); // wait for readers from parent get their locks if( bt_lockpage (bt, page_no, BtLockDelete, NULL) ) return bt->err; if( bt_lockpage (bt, page_no, BtLockWrite, &page) ) return bt->err; // switch parent fence key to foster child if( slotptr(page, page->cnt)->dead ) slotptr(bt->page, slot)->dead = 1; else bt_putid (slotptr(bt->page, slot)->id, bt_getid(slotptr(page, page->cnt)->id)); // remove foster child from our page // add our new fence key to parent page->cnt--; page->act--; page->foster--; key = keyptr(page, page->cnt); if( bt_addkeytopage (bt, slot, key->key, key->len, page_no, tod) ) return bt->err; if( bt_unlockpage (bt, page_no, BtLockDelete) ) return bt->err; if( bt_unlockpage (bt, page_no, BtLockParent) ) return bt->err; return bt_unlockpage (bt, page_no, BtLockWrite); } // Insert new key into the btree at leaf level. BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod) { uint slot, idx; BtPage page; BtKey ptr; while( 1 ) { if( slot = bt_loadpage (bt, key, len, 0, BtLockWrite) ) ptr = keyptr(bt->page, slot); else { if ( !bt->err ) bt->err = BTERR_ovflw; return bt->err; } // if key already exists, update id and return page = bt->page; if( !keycmp (ptr, key, len) ) { slotptr(page, slot)->dead = 0; slotptr(page, slot)->tod = tod; bt_putid(slotptr(page,slot)->id, id); return bt_unlockpage(bt, bt->page_no, BtLockWrite); } // check if page has enough space if( page->min >= (page->cnt + 1) * sizeof(BtSlot) + sizeof(*page) + len + 1) break; if( bt_splitpage (bt, len) ) return bt->err; } return bt_addkeytopage (bt, slot, key, len, id, tod); } // cache page of keys into cursor and return starting slot for given key uint bt_startkey (BtDb *bt, unsigned char *key, uint len) { uint slot; // cache page for retrieval if( slot = bt_loadpage (bt, key, len, 0, BtLockRead) ) memcpy (bt->cursor, bt->page, bt->mgr->page_size); bt->cursor_page = bt->page_no; if ( bt_unlockpage(bt, bt->page_no, BtLockRead) ) return 0; return slot; } // return next slot for cursor page // or slide cursor right into next page uint bt_nextkey (BtDb *bt, uint slot) { BtPage page; uid right; do { right = bt_getid(bt->cursor->right); while( slot++ < bt->cursor->cnt - bt->cursor->foster ) if( slotptr(bt->cursor,slot)->dead ) continue; else if( right || (slot < bt->cursor->cnt - bt->cursor->foster) ) return slot; else break; if( !right ) break; bt->cursor_page = right; if( bt_lockpage(bt, right, BtLockRead, &page) ) return 0; memcpy (bt->cursor, page, bt->mgr->page_size); if ( bt_unlockpage(bt, right, BtLockRead) ) return 0; slot = 0; } while( 1 ); return bt->err = 0; } BtKey bt_key(BtDb *bt, uint slot) { return keyptr(bt->cursor, slot); } uid bt_uid(BtDb *bt, uint slot) { return bt_getid(slotptr(bt->cursor,slot)->id); } uint bt_tod(BtDb *bt, uint slot) { return slotptr(bt->cursor,slot)->tod; } #ifdef STANDALONE typedef struct { char *infile; char type; BtMgr *mgr; } ThreadArg; // standalone program to index file of keys // then list them onto std-out #ifdef unix void *index_file (void *arg) #else uint __stdcall index_file (void *arg) #endif { int line = 0, found = 0; unsigned char key[256]; ThreadArg *args = arg; int ch, len = 0, slot; time_t tod[1]; BtKey ptr; BtDb *bt; FILE *in; bt = bt_open (args->mgr); time (tod); switch(args->type | 0x20) { case 'w': fprintf(stderr, "started indexing for %s\n", args->infile); if( in = fopen (args->infile, "rb") ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( bt_insertkey (bt, key, len, ++line, *tod) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } else if( len < 255 ) key[len++] = ch; fprintf(stderr, "finished %s for %d keys\n", args->infile, line); break; case 'd': fprintf(stderr, "started deleting keys for %s\n", args->infile); if( in = fopen (args->infile, "rb") ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { line++; if( bt_deletekey (bt, key, len, 0) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } else if( len < 255 ) key[len++] = ch; fprintf(stderr, "finished %s for keys, %d \n", args->infile, line); break; case 'f': fprintf(stderr, "started finding keys for %s\n", args->infile); if( in = fopen (args->infile, "rb") ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { line++; if( bt_findkey (bt, key, len) ) found++; else if( bt->err ) fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0); len = 0; } else if( len < 255 ) key[len++] = ch; fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found); break; case 's': len = key[0] = 0; fprintf(stderr, "started reading\n"); if( slot = bt_startkey (bt, key, len) ) slot--; else fprintf(stderr, "Error %d in StartKey. Syserror: %d\n", bt->err, errno), exit(0); while( slot = bt_nextkey (bt, slot) ) { ptr = bt_key(bt, slot); fwrite (ptr->key, ptr->len, 1, stdout); fputc ('\n', stdout); } } bt_close (bt); #ifdef unix return NULL; #else return 0; #endif } typedef struct timeval timer; int main (int argc, char **argv) { int idx, cnt, len, slot, err; int segsize, bits = 16; #ifdef unix pthread_t *threads; timer start, stop; #else time_t start[1], stop[1]; HANDLE *threads; #endif double real_time; ThreadArg *args; uint map = 0; char key[1]; BtMgr *mgr; BtKey ptr; BtDb *bt; if( argc < 3 ) { fprintf (stderr, "Usage: %s idx_file Read/Write/Scan/Delete/Find [page_bits mapped_segments seg_bits hash_size src_file1 src_file2 ... ]\n", argv[0]); fprintf (stderr, " where page_bits is the page size in bits\n"); fprintf (stderr, " mapped_segments is the number of mmap segments in buffer pool\n"); fprintf (stderr, " seg_bits is the size of individual segments in buffer pool in pages in bits\n"); fprintf (stderr, " hash_size is the size of buffer pool hash table\n"); fprintf (stderr, " src_file1 thru src_filen are files of keys separated by newline\n"); exit(0); } #ifdef unix gettimeofday(&start, NULL); #else time(start); #endif if( argc > 3 ) bits = atoi(argv[3]); if( argc > 4 ) map = atoi(argv[4]); if( map > 65536 ) fprintf (stderr, "Warning: mapped_pool > 65536 segments\n"); if( argc > 5 ) segsize = atoi(argv[5]); else segsize = 4; // 16 pages per mmap segment cnt = argc - 6; #ifdef unix threads = malloc (cnt * sizeof(pthread_t)); #else threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE)); #endif args = malloc (cnt * sizeof(ThreadArg)); mgr = bt_mgr ((argv[1]), BT_rw, bits, map, segsize, map / 8); if( !mgr ) { fprintf(stderr, "Index Open Error %s\n", argv[1]); exit (1); } // fire off threads for( idx = 0; idx < cnt; idx++ ) { args[idx].infile = argv[idx + 6]; args[idx].type = argv[2][0]; args[idx].mgr = mgr; #ifdef unix if( err = pthread_create (threads + idx, NULL, index_file, args + idx) ) fprintf(stderr, "Error creating thread %d\n", err); #else threads[idx] = (HANDLE)_beginthreadex(NULL, 65536, index_file, args + idx, 0, NULL); #endif } // wait for termination #ifdef unix for( idx = 0; idx < cnt; idx++ ) pthread_join (threads[idx], NULL); gettimeofday(&stop, NULL); real_time = 1000.0 * ( stop.tv_sec - start.tv_sec ) + 0.001 * (stop.tv_usec - start.tv_usec ); #else WaitForMultipleObjects (cnt, threads, TRUE, INFINITE); for( idx = 0; idx < cnt; idx++ ) CloseHandle(threads[idx]); time (stop); real_time = 1000 * (*stop - *start); #endif fprintf(stderr, " Time to complete: %.2f seconds\n", real_time/1000); cnt = 0; len = key[0] = 0; bt = bt_open (mgr); fprintf(stderr, "started reading\n"); if( slot = bt_startkey (bt, key, len) ) slot--; else fprintf(stderr, "Error %d in StartKey. Syserror: %d\n", bt->err, errno), exit(0); while( slot = bt_nextkey (bt, slot) ) cnt++; fprintf(stderr, " Total keys read %d\n", cnt); bt_close (bt); bt_mgrclose (mgr); } #endif //STANDALONE