// jaluta's balanced B-Link tree algorithms // 26 NOV 2013 // author: karl malbrain, malbrain@cal.berkeley.edu /* This work, including the source code, documentation and related data, is placed into the public domain. The orginal author is Karl Malbrain. THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE, ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE RESULTING FROM THE USE, MODIFICATION, OR REDISTRIBUTION OF THIS SOFTWARE. */ // Please see the project home page for documentation // http://code.google.com/p/high-concurrency-btree #define _FILE_OFFSET_BITS 64 #define _LARGEFILE64_SOURCE #ifdef linux #define _GNU_SOURCE #endif #ifdef unix #include #include #include #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #include #include #include #include #include #endif #include #include typedef unsigned long long uid; #ifndef unix typedef unsigned long long off64_t; typedef unsigned short ushort; typedef unsigned int uint; #endif #define BT_ro 0x6f72 // ro #define BT_rw 0x7772 // rw #define BT_fl 0x6c66 // fl #define BT_maxbits 24 // maximum page size in bits #define BT_minbits 9 // minimum page size in bits #define BT_minpage (1 << BT_minbits) // minimum page size #define BT_hashsize 512 // size of hash index for page cache #define BT_hashprime 8191 // prime number for hashing typedef enum{ BtLockShared = 1, BtLockUpdate = 2, BtLockXclusive = 3, BtLockUpgrade = 4, }BtLock; // Define the length of the page and key pointers #define BtId 6 // Page key slot definition. // If BT_maxbits is 16 or less, you can save 4 bytes // for each key stored by making the first two uints // into ushorts. You can also save 4 bytes by removing // the tod field from the key. typedef struct { uint off; // page offset for key start uint tod; // time-stamp for key unsigned char id[BtId]; // id associated with key } BtSlot; // The key structure occupies space at the upper end of // each page. It's a length byte followed by up to // 255 value bytes. typedef struct { unsigned char len; unsigned char key[255]; } *BtKey; // The first part of an index page. // It is immediately followed // by the BtSlot array of keys. typedef struct { uint cnt; // count of keys in page uint min; // next key offset unsigned char lvl:3; // level of page unsigned char bits:5; // page size in bits unsigned char fence; // len of fence key at top of page unsigned char right[BtId]; // page number to right BtSlot slots[0]; // page slots } *BtPage; // The memory mapping hash table entry typedef struct { BtPage page; // mapped page pointer uid page_no; // mapped page number void *lruprev; // least recently used previous cache block void *lrunext; // lru next cache block void *hashprev; // previous cache block for the same hash idx void *hashnext; // next cache block for the same hash idx #ifndef unix HANDLE hmap; #endif }BtHash; // The object structure for Btree access typedef struct { uint page_size; // each page size uint page_bits; // each page size in bits uid parentpage; // current parent page number uid cursorpage; // current cursor page number uid childpage; // current child page number int err; uint mode; // read-write mode uint mapped_io; // use memory mapping BtPage temp; // temporary frame buffer (memory mapped/file IO) BtPage alloc; // frame buffer for alloc page ( page 0 ) BtPage cursor; // cached frame for start/next (never mapped) BtPage frame; // spare frame for the page split (never mapped) BtPage parent; // current parent page BtPage child; // current child page BtPage sibling; // current sibling page BtPage sibling2; // current sibling2 page #ifdef unix int idx; #else HANDLE idx; #endif unsigned char *mem; // frame, cursor, page memory buffer int nodecnt; // highest page cache node in use int nodemax; // highest page cache node allocated int hashmask; // number of hash headers in cache - 1 BtHash *lrufirst; // lru list head BtHash *lrulast; // lru list tail ushort cache[BT_hashsize]; // hash index for cache BtHash nodes[1]; // page cache follows } BtDb; typedef enum { BTERR_ok = 0, BTERR_struct, BTERR_ovflw, BTERR_lock, BTERR_map, BTERR_wrt, BTERR_hash, BTERR_restart } BTERR; // B-Tree functions extern void bt_close (BtDb *bt); extern BtDb *bt_open (char *name, uint mode, uint bits, uint cacheblk); extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod); extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len); extern uid bt_findkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_startkey (BtDb *bt, unsigned char *key, uint len); extern uint bt_nextkey (BtDb *bt, uint slot); // Helper functions to return slot values extern BtKey bt_key (BtDb *bt, uint slot); extern uid bt_uid (BtDb *bt, uint slot); extern uint bt_tod (BtDb *bt, uint slot); // BTree page number constants #define ALLOC_page 0 #define ROOT_page 1 // The page is allocated from low and hi ends. // The key offsets and row-id's are allocated // from the bottom, while the text of the key // is allocated from the top. When the two // areas meet, the page overflowns. // A key consists of a length byte, two bytes of // index number (0 - 65535), and up to 253 bytes // of key value. Duplicate keys are discarded. // Associated with each key is a 48 bit row-id. // The b-tree root is always located at page 1. // The first leaf page of level zero is always // located on page 2. // The b-tree pages at each level are linked // with next page to right to facilitate // cursors and provide for concurrency. // When to root page overflows, it is split in two and // the tree height is raised by a new root at page // one with two keys. // Groups of pages from the btree are optionally // cached with memory mapping. A hash table is used to keep // track of the cached pages. This behaviour is controlled // by the cache block size parameter to bt_open. // To achieve maximum concurrency one page is locked at a time // as the tree is traversed to find leaf key in question. The right // page numbers are used in cases where the page is being split, // or consolidated. // Page 0 is dedicated to lock for new page extensions, // and chains empty pages together for reuse. // Empty nodes are chained together through the ALLOC page and reused. // A special open mode of BT_fl is provided to safely access files on // WIN32 networks. WIN32 network operations should not use memory mapping. // This WIN32 mode sets FILE_FLAG_NOBUFFERING and FILE_FLAG_WRITETHROUGH // to prevent local caching of network file contents. // Access macros to address slot and key values from the page #define slotptr(page, slot) ((page)->slots + slot - 1) #define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off)) void bt_putid(unsigned char *dest, uid id) { int i = BtId; while( i-- ) dest[i] = (unsigned char)id, id >>= 8; } uid bt_getid(unsigned char *src) { uid id = 0; int i; for( i = 0; i < BtId; i++ ) id <<= 8, id |= *src++; return id; } // place requested latch on requested page_no. // the Shared latch is a read lock over segment 0 // the Update latch is a write lock over segment 1 // the Xclusive latch is a write lock over segment 0 & 1 // the Upgrade latch upgrades Update to Xclusive BTERR bt_lockpage(BtDb *bt, uid page_no, BtLock mode) { off64_t off = page_no << bt->page_bits; uint len = sizeof(*bt->parent); uint type; #ifdef unix int flag = PROT_READ | ( bt->mode == BT_ro ? 0 : PROT_WRITE ); struct flock lock[1]; #else uint flags = 0; OVERLAPPED ovl[1]; #endif switch( mode ) { case BtLockShared: // lock segment 0 w/read lock type = 0; break; case BtLockUpdate: // lock segment 1 w/write lock off += sizeof(*bt->parent); type = 1; break; case BtLockXclusive:// lock both segments w/write lock len += sizeof(*bt->parent); type = 1; break; case BtLockUpgrade: // lock segment 0 w/write lock type = 1; break; } #ifdef unix memset (lock, 0, sizeof(lock)); lock->l_start = off; lock->l_type = type ? F_WRLCK : F_RDLCK; lock->l_len = len; lock->l_whence = 0; if( fcntl (bt->idx, F_SETLKW, lock) < 0 ) return bt->err = BTERR_lock; return 0; #else memset (ovl, 0, sizeof(ovl)); ovl->OffsetHigh = (uint)(off >> 32); ovl->Offset = (uint)off; // use large offsets to // simulate advisory locking ovl->OffsetHigh |= 0x80000000; if( type = 1 ) flags |= LOCKFILE_EXCLUSIVE_LOCK; if( LockFileEx (bt->idx, flags, 0, len, 0L, ovl) ) return bt->err = 0; return bt->err = BTERR_lock; #endif } // remove lock on requested page_no. BTERR bt_unlockpage(BtDb *bt, uid page_no, BtLock mode) { off64_t off = page_no << bt->page_bits; uint len = sizeof(*bt->parent); #ifdef unix struct flock lock[1]; #else OVERLAPPED ovl[1]; #endif switch( mode ) { case BtLockShared: // unlock segment 0 break; case BtLockUpdate: // unlock segment 1 off += sizeof(*bt->parent); break; case BtLockXclusive:// unlock both segments len += sizeof(*bt->parent); break; case BtLockUpgrade: // unlock segment 0 break; } #ifdef unix memset (lock, 0, sizeof(lock)); lock->l_start = off; lock->l_type = F_UNLCK; lock->l_len = len; lock->l_whence = 0; if( fcntl (bt->idx, F_SETLK, lock) < 0 ) return bt->err = BTERR_lock; #else memset (ovl, 0, sizeof(ovl)); ovl->OffsetHigh = (uint)(off >> 32); ovl->Offset = (uint)off; // use large offsets to // simulate advisory locking ovl->OffsetHigh |= 0x80000000; if( !UnlockFileEx (bt->idx, 0, len, 0, ovl) ) return GetLastError(), bt->err = BTERR_lock; #endif return bt->err = 0; } // close and release memory void bt_close (BtDb *bt) { BtHash *hash; #ifdef unix // release mapped pages if( hash = bt->lrufirst ) do munmap (hash->page, (bt->hashmask+1) << bt->page_bits); while(hash = hash->lrunext); if ( bt->mem ) free (bt->mem); close (bt->idx); free (bt); #else if( hash = bt->lrufirst ) do { FlushViewOfFile(hash->page, 0); UnmapViewOfFile(hash->page); CloseHandle(hash->hmap); } while(hash = hash->lrunext); if ( bt->mem) VirtualFree (bt->mem, 0, MEM_RELEASE); FlushFileBuffers(bt->idx); CloseHandle(bt->idx); GlobalFree (bt); #endif } // open/create new btree // call with file_name, BT_openmode, bits in page size (e.g. 16), // size of mapped page cache (e.g. 8192) or zero for no mapping. BtDb *bt_open (char *name, uint mode, uint bits, uint nodemax) { BtLock lockmode = BtLockXclusive; uint lvl, attr, cacheblk; BtPage alloc; off64_t size; uint amt[1]; BtKey key; BtDb* bt; #ifndef unix SYSTEM_INFO sysinfo[1]; #endif #ifdef unix bt = malloc (sizeof(BtDb) + nodemax * sizeof(BtHash)); memset (bt, 0, sizeof(BtDb)); switch (mode & 0x7fff) { case BT_fl: case BT_rw: bt->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); break; case BT_ro: default: bt->idx = open ((char*)name, O_RDONLY); lockmode = BtLockShared; break; } if( bt->idx == -1 ) return free(bt), NULL; if( nodemax ) cacheblk = 4096; // page size for unix else cacheblk = 0; #else bt = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtDb) + nodemax * sizeof(BtHash)); attr = FILE_ATTRIBUTE_NORMAL; switch (mode & 0x7fff) { case BT_fl: attr |= FILE_FLAG_WRITE_THROUGH | FILE_FLAG_NO_BUFFERING; case BT_rw: bt->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL); break; case BT_ro: default: bt->idx = CreateFile(name, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, attr, NULL); lockmode = BtLockShared; break; } if( bt->idx == INVALID_HANDLE_VALUE ) return GlobalFree(bt), NULL; // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity GetSystemInfo(sysinfo); if( nodemax ) cacheblk = sysinfo->dwAllocationGranularity; else cacheblk = 0; #endif // determine sanity of page size if( bits > BT_maxbits ) bits = BT_maxbits; else if( bits < BT_minbits ) bits = BT_minbits; if ( bt_lockpage(bt, ALLOC_page, lockmode) ) return bt_close (bt), NULL; #ifdef unix *amt = 0; // read minimum page size to get root info if( size = lseek (bt->idx, 0L, 2) ) { alloc = malloc (BT_minpage); pread(bt->idx, alloc, BT_minpage, 0); bits = alloc->bits; free (alloc); } else if( mode == BT_ro ) return bt_close (bt), NULL; #else size = GetFileSize(bt->idx, amt); if( size || *amt ) { alloc = VirtualAlloc(NULL, BT_minpage, MEM_COMMIT, PAGE_READWRITE); if( !ReadFile(bt->idx, (char *)alloc, BT_minpage, amt, NULL) ) return bt_close (bt), NULL; bits = alloc->bits; VirtualFree (alloc, 0, MEM_RELEASE); } else if( mode == BT_ro ) return bt_close (bt), NULL; #endif bt->page_size = 1 << bits; bt->page_bits = bits; bt->nodemax = nodemax; bt->mode = mode; // setup cache mapping if( cacheblk ) { if( cacheblk < bt->page_size ) cacheblk = bt->page_size; bt->hashmask = (cacheblk >> bits) - 1; bt->mapped_io = 1; } #ifdef unix bt->mem = malloc (8 *bt->page_size); #else bt->mem = VirtualAlloc(NULL, 8 * bt->page_size, MEM_COMMIT, PAGE_READWRITE); #endif bt->frame = (BtPage)bt->mem; bt->cursor = (BtPage)(bt->mem + bt->page_size); bt->alloc = (BtPage)(bt->mem + 2 * bt->page_size); bt->parent = (BtPage)(bt->mem + 3 * bt->page_size); bt->child = (BtPage)(bt->mem + 4 * bt->page_size); bt->temp = (BtPage)(bt->mem + 5 * bt->page_size); bt->sibling = (BtPage)(bt->mem + 6 * bt->page_size); bt->sibling2 = (BtPage)(bt->mem + 7 * bt->page_size); if( size || *amt ) { if ( bt_unlockpage(bt, ALLOC_page, lockmode) ) return bt_close (bt), NULL; return bt; } // initialize an empty b-tree with alloc page & root page memset (bt->alloc, 0, bt->page_size); bt_putid(bt->alloc->right, ROOT_page + 1); bt->alloc->bits = bt->page_bits; #ifdef unix if( write (bt->idx, bt->alloc, bt->page_size) < bt->page_size ) return bt_close (bt), NULL; #else if( !WriteFile (bt->idx, (char *)bt->alloc, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif // write root page memset (bt->frame, 0, bt->page_size); bt->frame->bits = bt->page_bits; bt->frame->min = bt->page_size; #ifdef unix if( write (bt->idx, bt->frame, bt->page_size) < bt->page_size ) return bt_close (bt), NULL; #else if( !WriteFile (bt->idx, (char *)bt->frame, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif // create initial empty page area by writing last page of first // cache area (other pages are zeroed by O/S) if( bt->mapped_io && bt->hashmask > 2 ) { memset(bt->frame, 0, bt->page_size); #ifdef unix pwrite(bt->idx, bt->frame, bt->page_size, bt->hashmask << bt->page_bits); #else SetFilePointer (bt->idx, bt->hashmask << bt->page_bits, NULL, FILE_BEGIN); if( !WriteFile (bt->idx, (char *)bt->frame, bt->page_size, amt, NULL) ) return bt_close (bt), NULL; if( *amt < bt->page_size ) return bt_close (bt), NULL; #endif } if( bt_unlockpage(bt, ALLOC_page, lockmode) ) return bt_close (bt), NULL; return bt; } // reset parent/child page pointers void bt_resetpages (BtDb *bt) { if( bt->mapped_io ) return; bt->frame = (BtPage)bt->mem; bt->cursor = (BtPage)(bt->mem + bt->page_size); bt->alloc = (BtPage)(bt->mem + 2 * bt->page_size); bt->parent = (BtPage)(bt->mem + 3 * bt->page_size); bt->child = (BtPage)(bt->mem + 4 * bt->page_size); bt->temp = (BtPage)(bt->mem + 5 * bt->page_size); bt->sibling = (BtPage)(bt->mem + 6 * bt->page_size); bt->sibling2 = (BtPage)(bt->mem + 7 * bt->page_size); } // return pointer to high key // or NULL if infinite value BtKey bt_highkey (BtDb *bt, BtPage page) { if( page->lvl ) if( bt_getid (page->right) ) return keyptr(page, page->cnt); else return NULL; if( bt_getid (page->right) ) return ((BtKey)((unsigned char*)(page) + bt->page_size - page->fence)); return NULL; } // return pointer to slot key in index page // or NULL if infinite value BtKey bt_slotkey (BtPage page, uint slot) { if( slot < page->cnt || bt_getid (page->right) ) return keyptr(page, slot); else return NULL; } // compare two keys, returning > 0, = 0, or < 0 // as the comparison value int keycmp (BtKey key1, unsigned char *key2, uint len2) { uint len1 = key1->len; int ans; if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) ) return ans; if( len1 > len2 ) return 1; if( len1 < len2 ) return -1; return 0; } // Update current page of btree by writing file contents // or flushing mapped area to disk. BTERR bt_update (BtDb *bt, BtPage page, uid page_no) { off64_t off = page_no << bt->page_bits; #ifdef unix if ( !bt->mapped_io ) if ( pwrite(bt->idx, page, bt->page_size, off) != bt->page_size ) return bt->err = BTERR_wrt; #else uint amt[1]; if ( !bt->mapped_io ) { SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !WriteFile (bt->idx, (char *)page, bt->page_size, amt, NULL) ) return GetLastError(), bt->err = BTERR_wrt; if( *amt < bt->page_size ) return GetLastError(), bt->err = BTERR_wrt; } else if ( bt->mode == BT_fl ) { FlushViewOfFile(page, bt->page_size); FlushFileBuffers(bt->idx); } #endif return 0; } // find page in cache BtHash *bt_findhash(BtDb *bt, uid page_no) { BtHash *hash; uint idx; // compute cache block first page and hash idx page_no &= ~bt->hashmask; idx = (uint)(page_no * BT_hashprime % BT_hashsize); if( bt->cache[idx] ) hash = bt->nodes + bt->cache[idx]; else return NULL; do if( hash->page_no == page_no ) break; while(hash = hash->hashnext ); return hash; } // add page cache entry to hash index void bt_linkhash(BtDb *bt, BtHash *node, uid page_no) { uint idx = (uint)((page_no & ~bt->hashmask) * BT_hashprime % BT_hashsize); BtHash *hash; if( bt->cache[idx] ) { node->hashnext = hash = bt->nodes + bt->cache[idx]; hash->hashprev = node; } node->hashprev = NULL; bt->cache[idx] = (ushort)(node - bt->nodes); } // remove cache entry from hash table void bt_unlinkhash(BtDb *bt, BtHash *node) { uint idx = (uint)((node->page_no & ~bt->hashmask) * BT_hashprime % BT_hashsize); BtHash *hash; // unlink node if( hash = node->hashprev ) hash->hashnext = node->hashnext; else if( hash = node->hashnext ) bt->cache[idx] = (ushort)(hash - bt->nodes); else bt->cache[idx] = 0; if( hash = node->hashnext ) hash->hashprev = node->hashprev; } // add cache page to lru chain and map pages BtPage bt_linklru(BtDb *bt, BtHash *hash, uid page_no) { int flag; off64_t off = (page_no & ~bt->hashmask) << bt->page_bits; off64_t limit = off + ((bt->hashmask+1) << bt->page_bits); BtHash *node; memset(hash, 0, sizeof(BtHash)); hash->page_no = (page_no & ~bt->hashmask); bt_linkhash(bt, hash, page_no); if( node = hash->lrunext = bt->lrufirst ) node->lruprev = hash; else bt->lrulast = hash; bt->lrufirst = hash; #ifdef unix flag = PROT_READ | ( bt->mode == BT_ro ? 0 : PROT_WRITE ); hash->page = (BtPage)mmap (0, (bt->hashmask+1) << bt->page_bits, flag, MAP_SHARED, bt->idx, off); if( (long long int)hash->page == -1LL ) return bt->err = BTERR_map, (BtPage)NULL; #else flag = ( bt->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE ); hash->hmap = CreateFileMapping(bt->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL); if( !hash->hmap ) return bt->err = BTERR_map, NULL; flag = ( bt->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE ); hash->page = MapViewOfFile(hash->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (bt->hashmask+1) << bt->page_bits); if( !hash->page ) return bt->err = BTERR_map, NULL; #endif return (BtPage)((char*)hash->page + ((uint)(page_no & bt->hashmask) << bt->page_bits)); } // find or place requested page in page-cache // return memory address where page is located. BtPage bt_hashpage(BtDb *bt, uid page_no) { BtHash *hash, *node, *next; BtPage page; // find page in cache and move to top of lru list if( hash = bt_findhash(bt, page_no) ) { page = (BtPage)((char*)hash->page + ((uint)(page_no & bt->hashmask) << bt->page_bits)); // swap node in lru list if( node = hash->lruprev ) { if( next = node->lrunext = hash->lrunext ) next->lruprev = node; else bt->lrulast = node; if( next = hash->lrunext = bt->lrufirst ) next->lruprev = hash; else return bt->err = BTERR_hash, (BtPage)NULL; hash->lruprev = NULL; bt->lrufirst = hash; } return page; } // map pages and add to cache entry if( bt->nodecnt < bt->nodemax ) { hash = bt->nodes + ++bt->nodecnt; return bt_linklru(bt, hash, page_no); } // hash table is already full, replace last lru entry from the cache if( hash = bt->lrulast ) { // unlink from lru list if( node = bt->lrulast = hash->lruprev ) node->lrunext = NULL; else return bt->err = BTERR_hash, (BtPage)NULL; #ifdef unix munmap (hash->page, (bt->hashmask+1) << bt->page_bits); #else FlushViewOfFile(hash->page, 0); UnmapViewOfFile(hash->page); CloseHandle(hash->hmap); #endif // unlink from hash table bt_unlinkhash(bt, hash); // map and add to cache return bt_linklru(bt, hash, page_no); } return bt->err = BTERR_hash, (BtPage)NULL; } // map a btree page onto current page BTERR bt_mappage (BtDb *bt, BtPage *page, uid page_no) { off64_t off = page_no << bt->page_bits; #ifndef unix int amt[1]; #endif if( bt->mapped_io ) { bt->err = 0; *page = bt_hashpage(bt, page_no); return bt->err; } #ifdef unix if ( pread(bt->idx, *page, bt->page_size, off) < bt->page_size ) return bt->err = BTERR_map; #else SetFilePointer (bt->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); if( !ReadFile(bt->idx, *page, bt->page_size, amt, NULL) ) return bt->err = BTERR_map; if( *amt < bt->page_size ) return bt->err = BTERR_map; #endif return 0; } // deallocate a deleted page // place on free chain out of allocator page // page must already be BtLockXclusive and mapped BTERR bt_freepage (BtDb *bt, BtPage page, uid page_no) { // lock allocation page if ( bt_lockpage(bt, ALLOC_page, BtLockUpdate) ) return bt->err; if( bt_mappage (bt, &bt->alloc, ALLOC_page) ) return bt->err; // store chain in second right bt_putid(page->right, bt_getid(bt->alloc[1].right)); bt_putid(bt->alloc[1].right, page_no); if( bt_update(bt, bt->alloc, ALLOC_page) ) return bt->err; if( bt_update(bt, page, page_no) ) return bt->err; // unlock page zero if( bt_unlockpage(bt, ALLOC_page, BtLockUpdate) ) return bt->err; return 0; } // allocate a new page and write page into it uid bt_newpage(BtDb *bt, BtPage page) { uid new_page; char *pmap; int reuse; // lock page zero if ( bt_lockpage(bt, ALLOC_page, BtLockUpdate) ) return 0; if( bt_mappage (bt, &bt->alloc, ALLOC_page) ) return 0; // use empty chain first // else allocate empty page if( new_page = bt_getid(bt->alloc[1].right) ) { if( bt_mappage (bt, &bt->temp, new_page) ) return 0; // don't unlock on error bt_putid(bt->alloc[1].right, bt_getid(bt->temp->right)); reuse = 1; } else { new_page = bt_getid(bt->alloc->right); bt_putid(bt->alloc->right, new_page+1); reuse = 0; } if( bt_update(bt, bt->alloc, ALLOC_page) ) return 0; // don't unlock on error // unlock page zero if ( bt_unlockpage(bt, ALLOC_page, BtLockUpdate) ) return 0; if( !bt->mapped_io ) { if( bt_update(bt, page, new_page) ) return 0; //don't unlock on error // unlock page zero if ( bt_unlockpage(bt, ALLOC_page, BtLockWrite) ) return 0; return new_page; } #ifdef unix if ( pwrite(bt->idx, page, bt->page_size, new_page << bt->page_bits) < bt->page_size ) return bt->err = BTERR_wrt, 0; // if writing first page of hash block, zero last page in the block if ( !reuse && bt->hashmask > 0 && (new_page & bt->hashmask) == 0 ) { // use temp buffer to write zeros memset(bt->temp, 0, bt->page_size); if ( pwrite(bt->idx,bt->temp, bt->page_size, (new_page | bt->hashmask) << bt->page_bits) < bt->page_size ) return bt->err = BTERR_wrt, 0; } #else // bring new page into page-cache and copy page. // this will extend the file into the new pages. if( !(pmap = (char*)bt_hashpage(bt, new_page & ~bt->hashmask)) ) return 0; memcpy(pmap+((new_page & bt->hashmask) << bt->page_bits), page, bt->page_size); #endif return new_page; } // find slot in given page for given key int bt_findslot (BtPage page, unsigned char *key, uint len) { uint diff, higher = page->cnt, low = 1, slot; uint good = 0; // make last key an infinite fence value if( !page->lvl || bt_getid (page->right) ) higher++; else good++; // low is the next candidate, higher is already // tested as .ge. the given key, loop ends when they meet if( higher ) while( diff = higher - low ) { slot = low + ( diff >> 1 ); if( keycmp (keyptr(page, slot), key, len) < 0 ) low = slot + 1; else higher = slot, good++; } // return zero if key is beyond highkey value // or page is empty return good ? higher : 0; } // split full parent node BTERR bt_splitparent (BtDb *bt, unsigned char *key, uint len) { uint cnt = 0, idx = 0, max, nxt = bt->page_size; uid parentpage = bt->parentpage, right; BtPage page = bt->parent; uid new_page; BtKey ptr; // upgrade parent latch to Xclusive if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; // split higher half of keys to bt->frame memset (bt->frame, 0, bt->page_size); max = (int)page->cnt; cnt = max / 2; idx = 0; // link right sibling node into new right page right = bt_getid (page->right); bt_putid(bt->frame->right, right); // record higher fence key in new right leaf page if( bt->frame->fence = page->fence ) { memcpy ((unsigned char *)bt->frame + bt->page_size - bt->frame->fence, (unsigned char *)(page) + bt->page_size - bt->frame->fence, bt->frame->fence); nxt -= page->fence; } while( cnt++ < max ) { // copy key, but not infinite values if( cnt < max || !page->lvl || right ) { ptr = keyptr(page, cnt); nxt -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + nxt, ptr, ptr->len + 1); } // copy slot memcpy(slotptr(bt->frame,++idx)->id, slotptr(page,cnt)->id, BtId); slotptr(bt->frame, idx)->tod = slotptr(page, cnt)->tod; slotptr(bt->frame, idx)->off = nxt; } bt->frame->bits = bt->page_bits; bt->frame->lvl = page->lvl; bt->frame->min = nxt; bt->frame->cnt = idx; // get new free page and write right frame to it. if( !(new_page = bt_newpage(bt, bt->frame)) ) return bt->err; // update lower keys to continue in old page memcpy (bt->frame, page, bt->page_size); memset (page+1, 0, bt->page_size - sizeof(*page)); nxt = bt->page_size; max /= 2; cnt = 0; idx = 0; // record fence key in left leaf page if( !page->lvl ) { ptr = keyptr(bt->frame, max); nxt -= ptr->len + 1; memcpy ((unsigned char *)page + nxt, ptr, ptr->len + 1); page->fence = ptr->len + 1; } // assemble page of smaller keys // no infinite value to deal with while( cnt++ < max ) { ptr = keyptr(bt->frame, cnt); nxt -= ptr->len + 1; memcpy ((unsigned char *)page + nxt, ptr, ptr->len + 1); memcpy(slotptr(page,++idx)->id, slotptr(bt->frame,cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; } bt_putid(page->right, new_page); page->min = nxt; page->cnt = idx; // update left node if( bt_update(bt, page, parentpage) ) return bt->err; // decide to move to new right // node or stay on left node ptr = bt_highkey (bt, page); if( keycmp (ptr, key, len) >= 0 ) return bt_unlockpage (bt, parentpage, BtLockUpgrade); bt->parentpage = new_page; if( bt_mappage (bt, &bt->parent, new_page) ) return bt->err; if( bt_lockpage (bt, new_page, BtLockUpdate) ) return bt->err; if( bt_unlockpage (bt, parentpage, BtLockUpgrade) ) return bt->err; return bt_unlockpage (bt, parentpage, BtLockUpdate); } // add unlinked node key into parent // childpage is existing record // siblingpage is right record BTERR bt_parentlink (BtDb *bt, BtPage left, uid leftpage, BtKey rightkey, uid rightpage) { BtKey leftkey = bt_highkey (bt, left); BtPage page = bt->parent; uint slot, idx; // upgrade parent latch to exclusive if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; // find the existing right high key in the parent // and fix the downlink to point to right page if( rightkey ) { if( !(slot = bt_findslot (page, rightkey->key, rightkey->len)) ) return bt->err = BTERR_struct; } else slot = page->cnt; bt_putid(slotptr(page,slot)->id, rightpage); // calculate next available slot and copy left key onto page page->min -= leftkey->len + 1; // reset lowest used offset memcpy ((unsigned char *)page + page->min, leftkey, leftkey->len + 1); // now insert key into array before slot idx = ++page->cnt; while( idx > slot ) *slotptr(page, idx) = *slotptr(page, idx -1), idx--; bt_putid(slotptr(page,slot)->id, leftpage); slotptr(page, slot)->off = page->min; if ( bt_update(bt, page, bt->parentpage) ) return bt->err; // downgrade parent page lock to BtLockUpdate if( bt_unlockpage(bt, bt->parentpage, BtLockUpgrade) ) return bt->err; return 0; } // remove slot from parent void bt_removeslot(BtDb *bt, uint slot) { uint nxt = bt->page_size, amt; BtPage page = bt->parent; uint cnt = 0, idx = 0; uint max = page->cnt; uid right; BtKey key; memcpy (bt->frame, page, bt->page_size); // skip page info and set rest of page to zero memset (page+1, 0, bt->page_size - sizeof(*page)); // copy fence key onto new page if( amt = page->fence ) { nxt -= amt; memcpy ((unsigned char *)page + nxt, (unsigned char *)(bt->frame) + nxt, amt); } right = bt_getid (page->right); while( cnt++ < max ) { // skip key to delete if( cnt == slot ) continue; // copy key, but not infinite value if( cnt < max || !page->lvl || right ) { key = keyptr(bt->frame, cnt); nxt -= key->len + 1; memcpy ((unsigned char *)page + nxt, key, key->len + 1); } // copy slot memcpy(slotptr(page, ++idx)->id, slotptr(bt->frame, cnt)->id, BtId); slotptr(page, idx)->tod = slotptr(bt->frame, cnt)->tod; slotptr(page, idx)->off = nxt; } page->min = nxt; page->cnt = idx; } // unlink sibling node BTERR bt_parentunlink (BtDb *bt, BtPage child, uid childpage) { BtKey parentkey = bt_highkey (bt, child); uint slot; if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; // delete child's slot from parent if( slot = bt_findslot (bt->parent, parentkey->key, parentkey->len) ) bt_removeslot (bt, slot); else return bt->err + BTERR_struct; // sibling now in the slot bt_putid(slotptr(bt->parent,slot)->id, childpage); if ( bt_update(bt, bt->parent, bt->parentpage) ) return bt->err; // unlock parent page completely if( bt_unlockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; return bt_unlockpage(bt, bt->parentpage, BtLockUpdate); } // merge right sibling page into child page BTERR bt_mergepages (BtDb *bt, BtPage *right, uid rightpage) { BtPage *left = &bt->child; uint idx, amt; BtKey ptr; if( bt_lockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; if( bt_lockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; // initialize empty frame memset (bt->frame, 0, bt->page_size); *bt->frame = **right; // copy right fence key if( amt = (*right)->fence ) memcpy ((unsigned char *)bt->frame + bt->page_size - amt, (unsigned char *)(*right) + bt->page_size - amt, amt); bt->frame->min = bt->page_size - amt; // copy lowerkey key/values from left page for( idx = 1; idx <= (*left)->cnt; idx++ ) { ptr = keyptr(*left, idx); bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); memcpy (slotptr(bt->frame, idx)->id, slotptr(*left, idx)->id, BtId); slotptr(bt->frame, idx)->tod = slotptr(*left, idx)->tod; slotptr(bt->frame, idx)->off = bt->frame->min; } bt->frame->cnt = (*left)->cnt; // copy higherkey key/values from right page for( idx = 1; idx <= (*right)->cnt; idx++ ) { // copy key but not infinite value if( idx < (*right)->cnt || !(*right)->lvl || right ) { ptr = keyptr(*right, idx); bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); } // copy slot memcpy (slotptr(bt->frame, bt->frame->cnt + idx)->id, slotptr(*right, idx)->id, BtId); slotptr(bt->frame, bt->frame->cnt + idx)->tod = slotptr(*right, idx)->tod; slotptr(bt->frame, bt->frame->cnt + idx)->off = bt->frame->min; } bt->frame->cnt += (*right)->cnt; memcpy (*left, bt->frame, bt->page_size); if( bt_update (bt, *left, bt->childpage) ) return bt->err; if( bt_freepage (bt, *right, rightpage) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpdate) ) return bt->err; return bt_unlockpage (bt, bt->childpage, BtLockUpgrade); } // redistribute right sibling page with child page // switch child page to containing page BTERR bt_redistribute (BtDb *bt, BtPage *right, uid rightpage, unsigned char *key, uint len) { uid siblingpage = bt_getid((*right)->right); BtPage *left = &bt->child; uint idx, cnt = 0, amt = 0; uint leftmax, rightmin; BtPage swap; BtKey ptr; if( bt_lockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; if( bt_lockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; // initialize empty frames to contain redistributed pages memset (bt->frame, 0, bt->page_size); // new left page memset (bt->temp, 0, bt->page_size); // new right page *bt->frame = **left; *bt->temp = **right; bt->frame->min = bt->page_size; bt->temp->min = bt->page_size; bt->frame->cnt = 0; bt->temp->cnt = 0; // find new left fence index // and copy left fence key if( (*left)->cnt > (*right)->cnt ) { rightmin = 0; leftmax = (*left)->cnt / 2; if( !bt->frame->lvl ) { ptr = keyptr(*left, leftmax); bt->frame->fence = ptr->len + 1; bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); } } else { leftmax = (*left)->cnt; rightmin = (*right)->cnt / 2; if( !bt->frame->lvl ) { ptr = keyptr(*right, rightmin); bt->frame->fence = ptr->len + 1; bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); } } // right fence stays the same, if any if( amt = (*right)->fence ) { bt->temp->min -= amt; memcpy ((unsigned char *)bt->temp + bt->temp->min, (unsigned char *)(*right) + bt->temp->min, amt); } // copy first set of lowerkey key/values from left page for( idx = 1; idx <= leftmax; idx++ ) { bt->frame->cnt++; ptr = keyptr(*left, idx); bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); memcpy (slotptr(bt->frame, idx)->id, slotptr(*left, idx)->id, BtId); slotptr(bt->frame, idx)->tod = slotptr(*left, idx)->tod; slotptr(bt->frame, idx)->off = bt->frame->min; } // copy remaining left page key/values from right page, if any for( idx = 1; idx <= rightmin; idx++ ) { bt->frame->cnt++; ptr = keyptr(*right, idx); bt->frame->min -= ptr->len + 1; memcpy ((unsigned char *)bt->frame + bt->frame->min, ptr, ptr->len + 1); memcpy (slotptr(bt->frame, bt->frame->cnt)->id, slotptr(*right, idx)->id, BtId); slotptr(bt->frame, bt->frame->cnt)->tod = slotptr(*right, idx)->tod; slotptr(bt->frame, bt->frame->cnt)->off = bt->frame->min; } // copy remaining left page key/values into new right page, if any for( idx = leftmax; idx <= (*left)->cnt; idx++ ) { bt->temp->cnt++; ptr = keyptr(*left, idx); bt->temp->min -= ptr->len + 1; memcpy ((unsigned char *)bt->temp + bt->temp->min, ptr, ptr->len + 1); memcpy (slotptr(bt->temp, bt->temp->cnt)->id, slotptr(*left, idx)->id, BtId); slotptr(bt->temp, bt->temp->cnt)->tod = slotptr(*left, idx)->tod; slotptr(bt->temp, bt->temp->cnt)->off = bt->temp->min; } // copy rest of higherkey key/values from right page for( idx = rightmin; idx <= (*right)->cnt; idx++ ) { // copy key, but not infinite value if( idx < (*right)->cnt || !(*right)->lvl || siblingpage ) { ptr = keyptr(*right, idx); bt->temp->min -= ptr->len + 1; memcpy ((unsigned char *)bt->temp + bt->temp->min, ptr, ptr->len + 1); } // copy slot bt->temp->cnt++; memcpy (slotptr(bt->temp, bt->temp->cnt)->id, slotptr(*right, idx)->id, BtId); slotptr(bt->temp, bt->temp->cnt)->tod = slotptr(*right, idx)->tod; slotptr(bt->temp, bt->temp->cnt)->off = bt->temp->min; } memcpy (*left, bt->frame, bt->page_size); memcpy (*right, bt->temp, bt->page_size); if( bt_update (bt, *left, bt->childpage) ) return bt->err; if( bt_update (bt, *right, rightpage) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpdate) ) return bt->err; ptr = bt_highkey (bt, *left); // decide which page is the child page // if leftkey >= our key, go with left if( keycmp (ptr, key, len) >= 0 ) { if( bt_unlockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, rightpage, BtLockUpdate) ) return bt->err; } else { if( bt_unlockpage (bt, rightpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, bt->childpage, BtLockUpdate) ) return bt->err; swap = bt->child; bt->child = *right; *left = swap; bt->childpage = rightpage; } return 0; } // lower the root level by removing the child node BTERR bt_lowerroot(BtDb *bt) { if( bt_lockpage (bt, ROOT_page, BtLockUpgrade) ) return bt->err; if( bt_lockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; memcpy (bt->parent, bt->child, bt->page_size); if( bt_update(bt, bt->parent, ROOT_page) ) return bt->err; if( bt_freepage(bt, bt->child, bt->childpage) ) return bt->err; if( bt_unlockpage (bt, bt->childpage, BtLockUpgrade) ) return bt->err; if( bt_unlockpage (bt, bt->childpage, BtLockUpdate) ) return bt->err; return bt_unlockpage (bt, ROOT_page, BtLockUpgrade); } // split the root and raise the height of the btree // return with parent page set to appropriate sibling BTERR bt_raiseroot(BtDb *bt, uid sibling, unsigned char *key, uint len) { unsigned char lowerkey[256]; uint nxt = bt->page_size; BtPage root = bt->parent; uid new_page; BtKey ptr; // upgrade root page lock to exclusive if( bt_lockpage (bt, ROOT_page, BtLockUpgrade) ) return bt->err; // Obtain an empty page to use, and copy the current // root (lower half) contents into it if( !(new_page = bt_newpage(bt, root)) ) return bt->err; if( bt_lockpage (bt, new_page, BtLockUpdate) ) return bt->err; // save high fence key for left page ptr = bt_highkey(bt, root); memcpy (lowerkey, ptr, ptr->len + 1); // preserve the page info at the bottom // and set rest to zero to initialize new root page memset(root+1, 0, bt->page_size - sizeof(*root)); // insert left key in newroot page nxt -= *lowerkey + 1; memcpy ((unsigned char *)root + nxt, lowerkey, *lowerkey + 1); bt_putid(slotptr(root, 1)->id, new_page); slotptr(root, 1)->off = nxt; // insert second (infinite) key on newroot page that's never examined // and increase the root level bt_putid(slotptr(root, 2)->id, sibling); bt_putid(root->right, 0); root->min = nxt; // reset lowest used offset and key count root->fence = 0; root->cnt = 2; root->lvl++; if( bt_update(bt, root, bt->parentpage) ) return bt->err; if( bt_unlockpage(bt, ROOT_page, BtLockUpgrade) ) return bt->err; if( bt_unlockpage(bt, ROOT_page, BtLockUpdate) ) return bt->err; // decide which root node to continue with // sibling has upper keys, newpage the lower ones if( keycmp((BtKey)lowerkey, key, len) < 0 ) { bt->parentpage = sibling; // go with the upper ones if( bt_unlockpage (bt, new_page, BtLockUpdate) ) return bt->err; return bt_mappage (bt, &bt->parent, sibling); } bt->parentpage = new_page; // go with the lower ones if( bt_unlockpage (bt, sibling, BtLockUpdate) ) return bt->err; return bt_mappage (bt, &bt->parent, new_page); } // handle underflowing child node BTERR bt_repairchild (BtDb *bt, uint parentslot, unsigned char *key, uint len) { BtKey parentkey = bt_slotkey(bt->parent, parentslot); BtKey fencekey = bt_highkey (bt, bt->child); BtKey highkey = bt_highkey(bt, bt->parent); BtKey siblingkey, siblingkey2; uid siblingpage, siblingpage2; uid swappage; BtPage swap; uint slot; // high key is never NULL // fence key is null on right end if( fencekey ) if( !highkey || keycmp (fencekey, highkey->key, highkey->len) < 0 ) { // childpage is not rightmost child of parent page siblingpage = bt_getid(bt->child->right); if( bt_lockpage (bt, siblingpage, BtLockUpdate) ) return bt->err; if( bt_mappage (bt, &bt->sibling, siblingpage) ) return bt->err; if( !parentkey || keycmp (fencekey, parentkey->key, parentkey->len) < 0 ) { // sibling is not linked in parent, so we can merge it if( bt_unlockpage (bt, bt->parentpage, BtLockUpdate) ) return bt->err; // calculate size of merged page by adding single child key to sibling fencekey = keyptr(bt->child, 1); if( bt->sibling->min < (bt->sibling->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->sibling) + fencekey->len + 1) return bt_redistribute (bt, &bt->sibling, siblingpage, key, len); else return bt_mergepages (bt, &bt->sibling, siblingpage); } // sibling has a key in the parent node // find its slot in parent if( siblingkey = bt_highkey (bt, bt->sibling) ) slot = bt_findslot (bt->parent, siblingkey->key, siblingkey->len); else slot = bt->parent->cnt; parentkey = bt_slotkey (bt->parent, slot); siblingpage2 = bt_getid(bt->sibling->right); if( siblingkey && parentkey && keycmp (siblingkey, parentkey->key, parentkey->len) < 0 ) { // sibling2 is not linked in P, its key is parentkey // can parent support its insertion? // if not, split parent node first. if( bt->parent->min < (bt->parent->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->parent) + parentkey->len + 1) { if( bt_splitparent (bt, key, len) ) return bt->err; // are we in the correct half of new parent nodes? // if not, restart the function. if( slot = bt_findslot (bt->parent, siblingkey->key, siblingkey->len) ) parentkey = keyptr(bt->parent, slot); else return BTERR_restart; } // link right of sibling into parent if( bt_parentlink (bt, bt->sibling, siblingpage, parentkey, siblingpage2) ) return bt->err; // unlink sibling from parent if( bt_parentunlink (bt, bt->child, bt->childpage) ) return bt->err; fencekey = keyptr(bt->child, 1); if( bt->sibling->min < (bt->sibling->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->sibling) + fencekey->len + 1) return bt_redistribute (bt, &bt->sibling, siblingpage, key, len); else return bt_mergepages (bt, &bt->sibling, siblingpage); } else { // unlink sibling from parent and merge if( bt_parentunlink (bt, bt->child, bt->childpage) ) return bt->err; fencekey = keyptr(bt->child, 1); if( bt->sibling->min < (bt->sibling->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->sibling) + fencekey->len + 1) return bt_redistribute (bt, &bt->sibling, siblingpage, key, len); else return bt_mergepages (bt, &bt->sibling, siblingpage); } } // child is rightmost key in the parent, // work with nodes to left. siblingpage = bt_getid(slotptr(bt->parent, parentslot - 1)->id); siblingkey = keyptr(bt->parent, parentslot - 1); if( bt_unlockpage (bt, bt->childpage, BtLockUpdate) ) return bt->err; if( bt_lockpage (bt, siblingpage, BtLockUpdate) ) return bt->err; if( bt_mappage (bt, &bt->sibling, siblingpage) ) return bt->err; siblingpage2 = bt_getid(bt->sibling->right); siblingkey2 = bt_highkey (bt, bt->sibling); if( bt_lockpage (bt, siblingpage2, BtLockUpdate) ) return bt->err; if( bt_mappage (bt, &bt->sibling2, siblingpage2) ) return bt->err; if( keycmp (siblingkey, siblingkey2->key, siblingkey2->len) == 0 ) { // left sibling right (mapped into sibling2) is our child node swap = bt->sibling2; bt->sibling2 = bt->child; bt->child = swap; // does child still need to merge/redistribute? if( bt->child->cnt > 1 ) { if( bt_unlockpage (bt, bt->parentpage, BtLockUpdate) ) return bt->err; return bt_unlockpage (bt, siblingpage, BtLockUpdate); } swap = bt->sibling; bt->sibling = bt->child; bt->child = swap; bt->childpage = siblingpage; siblingpage = siblingpage2; // unlink sibling node from parent and merge with child if( bt_parentunlink (bt, bt->child, bt->childpage) ) return bt->err; fencekey = keyptr(bt->sibling, 1); if( bt->child->min < (bt->child->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->sibling) + fencekey->len + 1) return bt_redistribute (bt, &bt->sibling, siblingpage, key, len); else return bt_mergepages (bt, &bt->sibling, siblingpage); } // currently unlinked sibling2 merges with child fencekey = bt_highkey (bt, bt->sibling2); if( bt->parent->min < (bt->parent->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->parent) + fencekey->len + 1) if( bt_splitparent (bt, key, len) ) return bt->err; if( bt_parentlink (bt, bt->sibling, siblingpage, fencekey, siblingpage2) ) return bt->err; if( bt_unlockpage (bt, siblingpage, BtLockUpdate) ) return bt->err; if( bt_lockpage (bt, bt->childpage, BtLockUpdate) ) return bt->err; if( bt_mappage (bt, &bt->child, bt->childpage) ) return bt->err; if( bt->child->cnt > 1 ) { if( bt_unlockpage (bt, bt->parentpage, BtLockUpdate) ) return bt->err; return bt_unlockpage (bt, siblingpage2, BtLockUpdate); } // unlink child from parent node leaving immediate // left sibling2 to accept merge/redistribution if( bt_parentunlink (bt, bt->sibling2, siblingpage2) ) return bt->err; swap = bt->sibling2; bt->sibling2 = bt->child; bt->child = swap; bt->childpage = siblingpage2; fencekey = keyptr(bt->sibling2, 1); if( bt->child->min < (bt->child->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->child) + fencekey->len + 1) return bt_redistribute (bt, &bt->sibling2, siblingpage2, key, len); else return bt_mergepages (bt, &bt->sibling2, siblingpage2); } // find and load leaf page for given key // leave page BtLockShared, return with key's slot int bt_loadpageread (BtDb *bt, unsigned char *key, uint len) { uid page_no = ROOT_page, prevpage = 0; uint slot, mode; // start at root of btree and drill down do { bt->parentpage = page_no; if( bt_lockpage(bt, bt->parentpage, BtLockShared) ) return 0; if( prevpage ) if( bt_unlockpage(bt, prevpage, BtLockShared) ) return 0; // map/obtain page contents if( bt_mappage (bt, &bt->parent, page_no) ) return 0; // find key on page at this level // return if leaf page if( (slot = bt_findslot (bt->parent, key, len)) ) { if( !bt->parent->lvl ) return slot; // continue down to next level page_no = bt_getid(slotptr(bt->parent, slot)->id); } // or slide right into next page else page_no = bt_getid(bt->parent->right); prevpage = bt->parentpage; } while( page_no ); // return EOF on end of right chain if( bt_unlockpage(bt, bt->parentpage, BtLockShared) ) return 0; return 0; // return EOF } // find and load leaf page for given key // return w/slot # on leaf page // leave page BtLockUpdate int bt_loadpageupdate (BtDb *bt, unsigned char *key, uint len) { uid parentpage = 0, nextpage; BtKey fencekey, parentkey; uint slot, mode; BtPage swap; // start at root of btree and drill down if( bt_lockpage(bt, ROOT_page, BtLockUpdate) ) return 0; // map/obtain page contents if( bt_mappage (bt, &bt->parent, ROOT_page) ) return 0; bt->parentpage = ROOT_page; do { // if root page, check for tree level growth // by existence of right pointer if( bt->parentpage == ROOT_page ) if( nextpage = bt_getid(bt->parent->right) ) { if( bt_lockpage (bt, nextpage, BtLockUpdate) ) return 0; if( bt_raiseroot (bt, nextpage, key, len) ) return 0; } // find key on page at this level // return if leaf page slot = bt_findslot (bt->parent, key, len); if( !bt->parent->lvl ) return slot; // lock & map the child bt->childpage = bt_getid(slotptr(bt->parent, slot)->id); if( bt_lockpage(bt, bt->childpage, BtLockUpdate) ) return 0; if( bt_mappage (bt, &bt->child, bt->childpage) ) return 0; // check child for underflow if( bt->parentpage == ROOT_page ) if( bt->parent->cnt == 1 ) if( !bt_getid(bt->child->right) ) { if( bt_lowerroot (bt) ) return 0; nextpage = ROOT_page; continue; } if( bt->child->cnt == 1 ) { while( bt_repairchild (bt, slot, key, len) == BTERR_restart ); if( bt->err ) return 0; swap = bt->child; bt->child = bt->parent; bt->parent = swap; nextpage = bt->childpage; continue; } fencekey = bt_highkey (bt, bt->child); parentkey = bt_slotkey(bt->parent, slot); // if right sibling is not linked, // fix links in parent node if( fencekey ) if( !parentkey || keycmp (fencekey, parentkey->key, parentkey->len) < 0 ) { if( bt->parent->min < (bt->parent->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->parent) + fencekey->len + 1) if( bt_splitparent (bt, key, len) ) { return 0; } else { slot = bt_findslot (bt->parent, key, len); parentkey = bt_slotkey(bt->parent, slot); } // add key to parent for child page // and fix downlink for childpage nextpage = bt_getid(bt->child->right); if( bt_parentlink (bt, bt->child, bt->childpage, parentkey, nextpage) ) return 0; } // unlock the parent page if( bt_unlockpage (bt, bt->parentpage, BtLockUpdate) ) return 0; // is our key on this child page? // is fencekey infinite, or .ge. our key if( !fencekey || keycmp (fencekey, key, len) >= 0 ) { swap = bt->child; bt->child = bt->parent; bt->parent = swap; nextpage = bt->childpage; continue; } // otherwise slide right into next page nextpage = bt_getid(bt->child->right); if( bt_lockpage (bt, nextpage, BtLockUpdate) ) return 0; if( bt_unlockpage (bt, bt->childpage, BtLockUpdate) ) return 0; if( bt_mappage (bt, &bt->parent, nextpage) ) return 0; } while( bt->parentpage = nextpage ); // return error on end of right chain bt->err = BTERR_struct; return 0; // return error } // find and delete key on leaf page BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len) { uid page_no, right; uint slot, tod; BtKey ptr; bt_resetpages (bt); if( slot = bt_loadpageupdate (bt, key, len) ) ptr = keyptr(bt->parent, slot); else if( bt->err ) return bt->err; // if key is found delete it, otherwise ignore request if( slot && !keycmp (ptr, key, len) ) { if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; bt_removeslot (bt, slot); if( bt_update(bt, bt->parent, bt->parentpage) ) return bt->err; if( bt_unlockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; } return bt_unlockpage (bt, bt->parentpage, BtLockUpdate); } // find key in leaf page and return row-id // or zero if key is not found. uid bt_findkey (BtDb *bt, unsigned char *key, uint len) { uint slot; BtKey ptr; uid id; bt_resetpages (bt); if( slot = bt_loadpageread (bt, key, len) ) ptr = keyptr(bt->parent, slot); else return 0; // if key exists, return row-id // otherwise return 0 if( ptr->len == len && !memcmp (ptr->key, key, len) ) id = bt_getid(slotptr(bt->parent,slot)->id); else id = 0; if ( bt_unlockpage(bt, bt->parentpage, BtLockShared) ) return 0; return id; } // Insert new key into the btree leaf page BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uid id, uint tod) { uint slot, idx; BtKey ptr; if( slot = bt_loadpageupdate (bt, key, len) ) ptr = keyptr(bt->parent, slot); else if( bt->err ) return bt->err; if( bt->parent->lvl ) abort(); if( bt->parent->lvl ) abort(); // if key already exists, update id and return if( slot ) if( !keycmp (ptr, key, len) ) { if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; slotptr(bt->parent, slot)->tod = tod; bt_putid(slotptr(bt->parent,slot)->id, id); if ( bt_update(bt, bt->parent, bt->parentpage) ) return bt->err; if( bt_unlockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; return bt_unlockpage(bt, bt->parentpage, BtLockUpdate); } // check if leaf page has enough space if( bt->parent->min < (bt->parent->cnt + 1) * sizeof(BtSlot) + sizeof(*bt->parent) + len + 1) { if( bt_splitparent (bt, key, len) ) return bt->err; slot = bt_findslot (bt->parent, key, len); } // calculate next available slot and copy key into page if( bt_lockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; bt->parent->min -= len + 1; // reset lowest used offset ((unsigned char *)bt->parent)[bt->parent->min] = len; memcpy ((unsigned char *)bt->parent + bt->parent->min +1, key, len ); // now insert key into array before slot idx = ++bt->parent->cnt; if( slot ) while( idx > slot ) *slotptr(bt->parent, idx) = *slotptr(bt->parent, idx -1), idx--; bt_putid(slotptr(bt->parent,idx)->id, id); slotptr(bt->parent, idx)->off = bt->parent->min; slotptr(bt->parent, idx)->tod = tod; if ( bt_update(bt, bt->parent, bt->parentpage) ) return bt->err; if( bt_unlockpage (bt, bt->parentpage, BtLockUpgrade) ) return bt->err; return bt_unlockpage(bt, bt->parentpage, BtLockUpdate); } // cache page of keys into cursor and return starting slot for given key uint bt_startkey (BtDb *bt, unsigned char *key, uint len) { uint slot; // cache page for retrieval if( slot = bt_loadpageread (bt, key, len) ) memcpy (bt->cursor, bt->parent, bt->page_size); bt->cursorpage = bt->parentpage; if ( bt_unlockpage(bt, bt->parentpage, BtLockShared) ) return 0; return slot; } // return next slot for cursor page // or slide cursor right into next page uint bt_nextkey (BtDb *bt, uint slot) { off64_t right; do { if( slot++ < bt->cursor->cnt ) return slot; right = bt_getid(bt->cursor->right); if( !right ) break; bt->cursorpage = right; if( bt_lockpage(bt, right,BtLockShared) ) return 0; if( bt_mappage (bt, &bt->parent, right) ) break; memcpy (bt->cursor, bt->parent, bt->page_size); if ( bt_unlockpage(bt, right, BtLockShared) ) return 0; slot = 0; } while( 1 ); return bt->err = 0; } BtKey bt_key(BtDb *bt, uint slot) { return keyptr(bt->cursor, slot); } uid bt_uid(BtDb *bt, uint slot) { return bt_getid(slotptr(bt->cursor,slot)->id); } uint bt_tod(BtDb *bt, uint slot) { return slotptr(bt->cursor,slot)->tod; } #ifdef STANDALONE // standalone program to index file of keys // then list them onto std-out int main (int argc, char **argv) { uint slot, found = 0, line = 0, off = 0; int ch, cnt = 0, bits = 12; unsigned char key[256]; clock_t done, start; time_t tod[1]; uint scan = 0; uint len = 0; uint map = 0; BtKey ptr; BtDb *bt; FILE *in; if( argc < 4 ) { fprintf (stderr, "Usage: %s idx_file src_file Read/Write/Scan/Delete/Find [page_bits mapped_pool_pages start_line_number]", argv[0]); exit(0); } start = clock(); time (tod); if( argc > 4 ) bits = atoi(argv[4]); if( argc > 5 ) map = atoi(argv[5]); if( map > 65536 ) fprintf (stderr, "Warning: mapped_pool > 65536 pages\n"); if( argc > 6 ) off = atoi(argv[6]); bt = bt_open ((argv[1]), BT_rw, bits, map); if( !bt ) { fprintf(stderr, "Index Open Error %s\n", argv[1]); exit (1); } switch(argv[3][0]| 0x20) { case 'w': fprintf(stderr, "started indexing for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; if( bt_insertkey (bt, key, len, ++line, *tod) ) fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished adding keys, %d \n", line); break; case 'd': fprintf(stderr, "started deleting keys for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; line++; if( bt_deletekey (bt, key, len) ) fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished deleting keys, %d\n", line); break; case 'f': fprintf(stderr, "started finding keys for %s\n", argv[2]); if( argc > 2 && (in = fopen (argv[2], "rb")) ) while( ch = getc(in), ch != EOF ) if( ch == '\n' ) { if( off ) sprintf((char *)key+len, "%.9d", line + off), len += 9; line++; if( bt_findkey (bt, key, len) ) found++; else if( bt->err ) fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0); len = 0; } else if( len < 245 ) key[len++] = ch; fprintf(stderr, "finished search of %d keys, found %d\n", line, found); break; case 's': scan++; break; } done = clock(); fprintf(stderr, " Time to complete: %.2f seconds\n", (float)(done - start) / CLOCKS_PER_SEC); cnt = 0; len = key[0] = 0; fprintf(stderr, "started reading\n"); slot = bt_startkey (bt, key, len); if( bt->err ) fprintf(stderr, "Error %d in StartKey. Syserror: %d\n", bt->err, errno), exit(0); if( slot-- ) while( slot = bt_nextkey (bt, slot) ) if( cnt++, scan ) { ptr = bt_key(bt, slot); fwrite (ptr->key, ptr->len, 1, stdout); fputc ('\n', stdout); } fprintf(stderr, " Total keys read %d\n", cnt); } #endif //STANDALONE