]> pd.if.org Git - btree/commitdiff
Introduce threadskv4b.c with duplicate key management
authorunknown <karl@E04.petzent.com>
Mon, 8 Sep 2014 21:57:09 +0000 (14:57 -0700)
committerunknown <karl@E04.petzent.com>
Mon, 8 Sep 2014 21:57:09 +0000 (14:57 -0700)
threadskv4b.c [new file with mode: 0644]

diff --git a/threadskv4b.c b/threadskv4b.c
new file mode 100644 (file)
index 0000000..8001086
--- /dev/null
@@ -0,0 +1,2922 @@
+// btree version threadskv4b sched_yield version
+//     with reworked bt_deletekey code,
+//     phase-fair reader writer lock,
+//     librarian page split code,
+//     and duplicate key management
+
+// 08 SEP 2014
+
+// author: karl malbrain, malbrain@cal.berkeley.edu
+
+/*
+This work, including the source code, documentation
+and related data, is placed into the public domain.
+
+The orginal author is Karl Malbrain.
+
+THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY
+OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF
+MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE,
+ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE
+RESULTING FROM THE USE, MODIFICATION, OR
+REDISTRIBUTION OF THIS SOFTWARE.
+*/
+
+// Please see the project home page for documentation
+// code.google.com/p/high-concurrency-btree
+
+#define _FILE_OFFSET_BITS 64
+#define _LARGEFILE64_SOURCE
+
+#ifdef linux
+#define _GNU_SOURCE
+#endif
+
+#ifdef unix
+#include <unistd.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <sys/time.h>
+#include <sys/mman.h>
+#include <errno.h>
+#include <pthread.h>
+#else
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h>
+#include <fcntl.h>
+#include <process.h>
+#include <intrin.h>
+#endif
+
+#include <memory.h>
+#include <string.h>
+#include <stddef.h>
+
+typedef unsigned long long     uid;
+
+#ifndef unix
+typedef unsigned long long     off64_t;
+typedef unsigned short         ushort;
+typedef unsigned int           uint;
+#endif
+
+#define BT_latchtable  128                                     // number of latch manager slots
+
+#define BT_ro 0x6f72   // ro
+#define BT_rw 0x7772   // rw
+
+#define BT_maxbits             24                                      // maximum page size in bits
+#define BT_minbits             9                                       // minimum page size in bits
+#define BT_minpage             (1 << BT_minbits)       // minimum page size
+#define BT_maxpage             (1 << BT_maxbits)       // maximum page size
+
+/*
+There are five lock types for each node in three independent sets: 
+1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. 
+2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 
+3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 
+4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. 
+5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. 
+*/
+
+typedef enum{
+       BtLockAccess,
+       BtLockDelete,
+       BtLockRead,
+       BtLockWrite,
+       BtLockParent
+} BtLock;
+
+//     definition for phase-fair reader/writer lock implementation
+
+typedef struct {
+       ushort rin[1];
+       ushort rout[1];
+       ushort ticket[1];
+       ushort serving[1];
+} RWLock;
+
+#define PHID 0x1
+#define PRES 0x2
+#define MASK 0x3
+#define RINC 0x4
+
+//     definition for spin latch implementation
+
+// exclusive is set for write access
+// share is count of read accessors
+// grant write lock when share == 0
+
+volatile typedef struct {
+       ushort exclusive:1;
+       ushort pending:1;
+       ushort share:14;
+} BtSpinLatch;
+
+#define XCL 1
+#define PEND 2
+#define BOTH 3
+#define SHARE 4
+
+//  hash table entries
+
+typedef struct {
+       BtSpinLatch latch[1];
+       volatile ushort slot;           // Latch table entry at head of chain
+} BtHashEntry;
+
+//     latch manager table structure
+
+typedef struct {
+       RWLock readwr[1];               // read/write page lock
+       RWLock access[1];               // Access Intent/Page delete
+       RWLock parent[1];               // Posting of fence key in parent
+       BtSpinLatch busy[1];            // slot is being moved between chains
+       volatile ushort next;           // next entry in hash table chain
+       volatile ushort prev;           // prev entry in hash table chain
+       volatile ushort pin;            // number of outstanding locks
+       volatile ushort hash;           // hash slot entry is under
+       volatile uid page_no;           // latch set page number
+} BtLatchSet;
+
+//     Define the length of the page and key pointers
+
+#define BtId 6
+
+//     Page key slot definition.
+
+//     Keys are marked dead, but remain on the page until
+//     it cleanup is called. The fence key (highest key) for
+//     a leaf page is always present, even after cleanup.
+
+//     Slot types
+
+//     In addition to the Unique keys that occupy slots
+//     there are Librarian and Duplicate key
+//     slots occupying the key slot array.
+
+//     The Librarian slots are dead keys that
+//     serve as filler, available to add new Unique
+//     or Dup slots that are inserted into the B-tree.
+
+//     The Duplicate slots have had their key bytes extended
+//     by 6 bytes to contain a binary duplicate key uniqueifier.
+
+typedef enum {
+       Unique,
+       Librarian,
+       Duplicate
+} BtSlotType;
+
+typedef struct {
+       uint off:BT_maxbits;    // page offset for key start
+       uint type:3;                    // type of slot
+       uint dead:1;                    // set for deleted slot
+} BtSlot;
+
+//     The key structure occupies space at the upper end of
+//     each page.  It's a length byte followed by the key
+//     bytes.
+
+typedef struct {
+       unsigned char len;
+       unsigned char key[1];
+} *BtKey;
+
+//     the value structure also occupies space at the upper
+//     end of the page. Each key is immediately followed by a value.
+
+typedef struct {
+       unsigned char len;
+       unsigned char value[1];
+} *BtVal;
+
+//     The first part of an index page.
+//     It is immediately followed
+//     by the BtSlot array of keys.
+
+//     note that this structure size
+//     must be a multiple of 8 bytes
+//     in order to place dups correctly.
+
+typedef struct BtPage_ {
+       uint cnt;                                       // count of keys in page
+       uint act;                                       // count of active keys
+       uint min;                                       // next key offset
+       uint garbage;                           // page garbage in bytes
+       unsigned char bits:7;           // page size in bits
+       unsigned char free:1;           // page is on free chain
+       unsigned char lvl:7;            // level of page
+       unsigned char kill:1;           // page is being deleted
+       unsigned char right[BtId];      // page number to right
+} *BtPage;
+
+//     The memory mapping pool table buffer manager entry
+
+typedef struct {
+       uid  basepage;                          // mapped base page number
+       char *map;                                      // mapped memory pointer
+       ushort slot;                            // slot index in this array
+       ushort pin;                                     // mapped page pin counter
+       void *hashprev;                         // previous pool entry for the same hash idx
+       void *hashnext;                         // next pool entry for the same hash idx
+#ifndef unix
+       HANDLE hmap;                            // Windows memory mapping handle
+#endif
+} BtPool;
+
+#define CLOCK_bit 0x8000               // bit in pool->pin
+
+//  The loadpage interface object
+
+typedef struct {
+       uid page_no;            // current page number
+       BtPage page;            // current page pointer
+       BtPool *pool;           // current page pool
+       BtLatchSet *latch;      // current page latch set
+} BtPageSet;
+
+//     structure for latch manager on ALLOC_page
+
+typedef struct {
+       struct BtPage_ alloc[1];        // next page_no in right ptr
+       unsigned long long dups[1];     // global duplicate key uniqueifier
+       unsigned char chain[BtId];      // head of free page_nos chain
+       BtSpinLatch lock[1];            // allocation area lite latch
+       ushort latchdeployed;           // highest number of latch entries deployed
+       ushort nlatchpage;                      // number of latch pages at BT_latch
+       ushort latchtotal;                      // number of page latch entries
+       ushort latchhash;                       // number of latch hash table slots
+       ushort latchvictim;                     // next latch entry to examine
+       BtHashEntry table[0];           // the hash table
+} BtLatchMgr;
+
+//     The object structure for Btree access
+
+typedef struct {
+       uint page_size;                         // page size    
+       uint page_bits;                         // page size in bits    
+       uint seg_bits;                          // seg size in pages in bits
+       uint mode;                                      // read-write mode
+#ifdef unix
+       int idx;
+#else
+       HANDLE idx;
+#endif
+       ushort poolcnt;                         // highest page pool node in use
+       ushort poolmax;                         // highest page pool node allocated
+       ushort poolmask;                        // total number of pages in mmap segment - 1
+       ushort hashsize;                        // size of Hash Table for pool entries
+       volatile uint evicted;          // last evicted hash table slot
+       ushort *hash;                           // pool index for hash entries
+       BtSpinLatch *latch;                     // latches for hash table slots
+       BtLatchMgr *latchmgr;           // mapped latch page from allocation page
+       BtLatchSet *latchsets;          // mapped latch set from latch pages
+       BtPool *pool;                           // memory pool page segments
+#ifndef unix
+       HANDLE halloc;                          // allocation and latch table handle
+#endif
+} BtMgr;
+
+typedef struct {
+       BtMgr *mgr;                             // buffer manager for thread
+       BtPage cursor;                  // cached frame for start/next (never mapped)
+       BtPage frame;                   // spare frame for the page split (never mapped)
+       uid cursor_page;                // current cursor page number   
+       unsigned char *mem;             // frame, cursor, page memory buffer
+       unsigned char key[256]; // last found complete key
+       int found;                              // last delete or insert was found
+       int err;                                // last error
+} BtDb;
+
+typedef enum {
+       BTERR_ok = 0,
+       BTERR_struct,
+       BTERR_ovflw,
+       BTERR_lock,
+       BTERR_map,
+       BTERR_wrt,
+       BTERR_hash
+} BTERR;
+
+// B-Tree functions
+extern void bt_close (BtDb *bt);
+extern BtDb *bt_open (BtMgr *mgr);
+extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, void *value, uint vallen, uint update);
+extern BTERR  bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl);
+extern int bt_findkey    (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax);
+extern BtKey bt_foundkey (BtDb *bt);
+extern uint bt_startkey  (BtDb *bt, unsigned char *key, uint len);
+extern uint bt_nextkey   (BtDb *bt, uint slot);
+
+//     manager functions
+extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolsize, uint segsize, uint hashsize);
+void bt_mgrclose (BtMgr *mgr);
+
+//  Helper functions to return slot values
+//     from the cursor page.
+
+extern BtKey bt_key (BtDb *bt, uint slot);
+extern BtVal bt_val (BtDb *bt, uint slot);
+
+//  BTree page number constants
+#define ALLOC_page             0       // allocation & latch manager hash table
+#define ROOT_page              1       // root of the btree
+#define LEAF_page              2       // first page of leaves
+#define LATCH_page             3       // pages for latch manager
+
+//     Number of levels to create in a new BTree
+
+#define MIN_lvl                        2
+
+//  The page is allocated from low and hi ends.
+//  The key slots are allocated from the bottom,
+//     while the text and value of the key
+//  are allocated from the top.  When the two
+//  areas meet, the page is split into two.
+
+//  A key consists of a length byte, two bytes of
+//  index number (0 - 65534), and up to 253 bytes
+//  of key value.
+
+//  Associated with each key is a value byte string
+//     containing any value desired.
+
+//  The b-tree root is always located at page 1.
+//     The first leaf page of level zero is always
+//     located on page 2.
+
+//     The b-tree pages are linked with next
+//     pointers to facilitate enumerators,
+//     and provide for concurrency.
+
+//     When to root page fills, it is split in two and
+//     the tree height is raised by a new root at page
+//     one with two keys.
+
+//     Deleted keys are marked with a dead bit until
+//     page cleanup. The fence key for a leaf node is
+//     always present
+
+//  Groups of pages called segments from the btree are optionally
+//  cached with a memory mapped pool. A hash table is used to keep
+//  track of the cached segments.  This behaviour is controlled
+//  by the cache block size parameter to bt_open.
+
+//  To achieve maximum concurrency one page is locked at a time
+//  as the tree is traversed to find leaf key in question. The right
+//  page numbers are used in cases where the page is being split,
+//     or consolidated.
+
+//  Page 0 is dedicated to lock for new page extensions,
+//     and chains empty pages together for reuse. It also
+//     contains the latch manager hash table.
+
+//     The ParentModification lock on a node is obtained to serialize posting
+//     or changing the fence key for a node.
+
+//     Empty pages are chained together through the ALLOC page and reused.
+
+//     Access macros to address slot and key values from the page
+//     Page slots use 1 based indexing.
+
+#define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1))
+#define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off))
+#define valptr(page, slot) ((BtVal)(keyptr(page,slot)->key + keyptr(page,slot)->len))
+
+void bt_putid(unsigned char *dest, uid id)
+{
+int i = BtId;
+
+       while( i-- )
+               dest[i] = (unsigned char)id, id >>= 8;
+}
+
+uid bt_getid(unsigned char *src)
+{
+uid id = 0;
+int i;
+
+       for( i = 0; i < BtId; i++ )
+               id <<= 8, id |= *src++; 
+
+       return id;
+}
+
+uid bt_newdup (BtDb *bt)
+{
+#ifdef unix
+       return __sync_fetch_and_add (bt->mgr->latchmgr->dups, 1) + 1;
+#else
+       return _InterlockedIncrement64(bt->mgr->latchmgr->dups, 1);
+#endif
+}
+
+//     Phase-Fair reader/writer lock implementation
+
+void WriteLock (RWLock *lock)
+{
+ushort w, r, tix;
+
+#ifdef unix
+       tix = __sync_fetch_and_add (lock->ticket, 1);
+#else
+       tix = _InterlockedExchangeAdd16 (lock->ticket, 1);
+#endif
+       // wait for our ticket to come up
+
+       while( tix != lock->serving[0] )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread ();
+#endif
+
+       w = PRES | (tix & PHID);
+#ifdef  unix
+       r = __sync_fetch_and_add (lock->rin, w);
+#else
+       r = _InterlockedExchangeAdd16 (lock->rin, w);
+#endif
+       while( r != *lock->rout )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread();
+#endif
+}
+
+void WriteRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_and (lock->rin, ~MASK);
+#else
+       _InterlockedAnd16 (lock->rin, ~MASK);
+#endif
+       lock->serving[0]++;
+}
+
+void ReadLock (RWLock *lock)
+{
+ushort w;
+#ifdef unix
+       w = __sync_fetch_and_add (lock->rin, RINC) & MASK;
+#else
+       w = _InterlockedExchangeAdd16 (lock->rin, RINC) & MASK;
+#endif
+       if( w )
+         while( w == (*lock->rin & MASK) )
+#ifdef unix
+               sched_yield ();
+#else
+               SwitchToThread ();
+#endif
+}
+
+void ReadRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_add (lock->rout, RINC);
+#else
+       _InterlockedExchangeAdd16 (lock->rout, RINC);
+#endif
+}
+
+//     Spin Latch Manager
+
+//     wait until write lock mode is clear
+//     and add 1 to the share count
+
+void bt_spinreadlock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, SHARE);
+#endif
+       //  see if exclusive request is granted or pending
+
+       if( !(prev & BOTH) )
+               return;
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, -SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     wait for other read and write latches to relinquish
+
+void bt_spinwritelock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, PEND | XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, PEND | XCL);
+#endif
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     try to obtain write lock
+
+//     return 1 if obtained,
+//             0 otherwise
+
+int bt_spinwritetry(BtSpinLatch *latch)
+{
+ushort prev;
+
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, XCL);
+#endif
+       //      take write access if all bits are clear
+
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return 1;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+       return 0;
+}
+
+//     clear write mode
+
+void bt_spinreleasewrite(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_and((ushort *)latch, ~BOTH);
+#else
+       _InterlockedAnd16((ushort *)latch, ~BOTH);
+#endif
+}
+
+//     decrement reader count
+
+void bt_spinreleaseread(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_add((ushort *)latch, -SHARE);
+#else
+       _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+}
+
+//     link latch table entry into latch hash table
+
+void bt_latchlink (BtDb *bt, ushort hashidx, ushort victim, uid page_no)
+{
+BtLatchSet *set = bt->mgr->latchsets + victim;
+
+       if( set->next = bt->mgr->latchmgr->table[hashidx].slot )
+               bt->mgr->latchsets[set->next].prev = victim;
+
+       bt->mgr->latchmgr->table[hashidx].slot = victim;
+       set->page_no = page_no;
+       set->hash = hashidx;
+       set->prev = 0;
+}
+
+//     release latch pin
+
+void bt_unpinlatch (BtLatchSet *set)
+{
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, -1);
+#else
+       _InterlockedDecrement16 (&set->pin);
+#endif
+}
+
+//     find existing latchset or inspire new one
+//     return with latchset pinned
+
+BtLatchSet *bt_pinlatch (BtDb *bt, uid page_no)
+{
+ushort hashidx = page_no % bt->mgr->latchmgr->latchhash;
+ushort slot, avail = 0, victim, idx;
+BtLatchSet *set;
+
+       //  obtain read lock on hash table entry
+
+       bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+       {
+               set = bt->mgr->latchsets + slot;
+               if( page_no == set->page_no )
+                       break;
+       } while( slot = set->next );
+
+       if( slot ) {
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+       }
+
+    bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot )
+               return set;
+
+  //  try again, this time with write lock
+
+  bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch);
+
+  if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+  {
+       set = bt->mgr->latchsets + slot;
+       if( page_no == set->page_no )
+               break;
+       if( !set->pin && !avail )
+               avail = slot;
+  } while( slot = set->next );
+
+  //  found our entry, or take over an unpinned one
+
+  if( slot || (slot = avail) ) {
+       set = bt->mgr->latchsets + slot;
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       set->page_no = page_no;
+       bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch);
+       return set;
+  }
+
+       //  see if there are any unused entries
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, 1) + 1;
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+
+       if( victim < bt->mgr->latchmgr->latchtotal ) {
+               set = bt->mgr->latchsets + victim;
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+               bt_latchlink (bt, hashidx, victim, page_no);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+               return set;
+       }
+
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, -1);
+#else
+       victim = _InterlockedDecrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+  //  find and reuse previous lock entry
+
+  while( 1 ) {
+#ifdef unix
+       victim = __sync_fetch_and_add(&bt->mgr->latchmgr->latchvictim, 1);
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchvictim) - 1;
+#endif
+       //      we don't use slot zero
+
+       if( victim %= bt->mgr->latchmgr->latchtotal )
+               set = bt->mgr->latchsets + victim;
+       else
+               continue;
+
+       //      take control of our slot
+       //      from other threads
+
+       if( set->pin || !bt_spinwritetry (set->busy) )
+               continue;
+
+       idx = set->hash;
+
+       // try to get write lock on hash chain
+       //      skip entry if not obtained
+       //      or has outstanding locks
+
+       if( !bt_spinwritetry (bt->mgr->latchmgr->table[idx].latch) ) {
+               bt_spinreleasewrite (set->busy);
+               continue;
+       }
+
+       if( set->pin ) {
+               bt_spinreleasewrite (set->busy);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+               continue;
+       }
+
+       //  unlink our available victim from its hash chain
+
+       if( set->prev )
+               bt->mgr->latchsets[set->prev].next = set->next;
+       else
+               bt->mgr->latchmgr->table[idx].slot = set->next;
+
+       if( set->next )
+               bt->mgr->latchsets[set->next].prev = set->prev;
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       bt_latchlink (bt, hashidx, victim, page_no);
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+       bt_spinreleasewrite (set->busy);
+       return set;
+  }
+}
+
+void bt_mgrclose (BtMgr *mgr)
+{
+BtPool *pool;
+uint slot;
+
+       // release mapped pages
+       //      note that slot zero is never used
+
+       for( slot = 1; slot < mgr->poolmax; slot++ ) {
+               pool = mgr->pool + slot;
+               if( pool->slot )
+#ifdef unix
+                       munmap (pool->map, (uid)(mgr->poolmask+1) << mgr->page_bits);
+#else
+               {
+                       FlushViewOfFile(pool->map, 0);
+                       UnmapViewOfFile(pool->map);
+                       CloseHandle(pool->hmap);
+               }
+#endif
+       }
+
+#ifdef unix
+       munmap (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+       munmap (mgr->latchmgr, 2 * mgr->page_size);
+#else
+       FlushViewOfFile(mgr->latchmgr, 0);
+       UnmapViewOfFile(mgr->latchmgr);
+       CloseHandle(mgr->halloc);
+#endif
+#ifdef unix
+       close (mgr->idx);
+       free (mgr->pool);
+       free (mgr->hash);
+       free ((void *)mgr->latch);
+       free (mgr);
+#else
+       FlushFileBuffers(mgr->idx);
+       CloseHandle(mgr->idx);
+       GlobalFree (mgr->pool);
+       GlobalFree (mgr->hash);
+       GlobalFree ((void *)mgr->latch);
+       GlobalFree (mgr);
+#endif
+}
+
+//     close and release memory
+
+void bt_close (BtDb *bt)
+{
+#ifdef unix
+       if( bt->mem )
+               free (bt->mem);
+#else
+       if( bt->mem)
+               VirtualFree (bt->mem, 0, MEM_RELEASE);
+#endif
+       free (bt);
+}
+
+//  open/create new btree buffer manager
+
+//     call with file_name, BT_openmode, bits in page size (e.g. 16),
+//             size of mapped page pool (e.g. 8192)
+
+BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolmax, uint segsize, uint hashsize)
+{
+uint lvl, attr, cacheblk, last, slot, idx;
+uint nlatchpage, latchhash;
+unsigned char value[BtId];
+BtLatchMgr *latchmgr;
+off64_t size;
+uint amt[1];
+BtMgr* mgr;
+BtKey key;
+BtVal val;
+int flag;
+
+#ifndef unix
+SYSTEM_INFO sysinfo[1];
+#endif
+
+       // determine sanity of page size and buffer pool
+
+       if( bits > BT_maxbits )
+               bits = BT_maxbits;
+       else if( bits < BT_minbits )
+               bits = BT_minbits;
+
+       if( !poolmax )
+               return NULL;    // must have buffer pool
+
+#ifdef unix
+       mgr = calloc (1, sizeof(BtMgr));
+
+       mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666);
+
+       if( mgr->idx == -1 )
+               return free(mgr), NULL;
+       
+       cacheblk = 4096;        // minimum mmap segment size for unix
+
+#else
+       mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr));
+       attr = FILE_ATTRIBUTE_NORMAL;
+       mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL);
+
+       if( mgr->idx == INVALID_HANDLE_VALUE )
+               return GlobalFree(mgr), NULL;
+
+       // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity
+       GetSystemInfo(sysinfo);
+       cacheblk = sysinfo->dwAllocationGranularity;
+#endif
+
+#ifdef unix
+       latchmgr = malloc (BT_maxpage);
+       *amt = 0;
+
+       // read minimum page size to get root info
+
+       if( size = lseek (mgr->idx, 0L, 2) ) {
+               if( pread(mgr->idx, latchmgr, BT_minpage, 0) == BT_minpage )
+                       bits = latchmgr->alloc->bits;
+               else
+                       return free(mgr), free(latchmgr), NULL;
+       } else if( mode == BT_ro )
+               return free(latchmgr), bt_mgrclose (mgr), NULL;
+#else
+       latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE);
+       size = GetFileSize(mgr->idx, amt);
+
+       if( size || *amt ) {
+               if( !ReadFile(mgr->idx, (char *)latchmgr, BT_minpage, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               bits = latchmgr->alloc->bits;
+       } else if( mode == BT_ro )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       mgr->page_size = 1 << bits;
+       mgr->page_bits = bits;
+
+       mgr->poolmax = poolmax;
+       mgr->mode = mode;
+
+       if( cacheblk < mgr->page_size )
+               cacheblk = mgr->page_size;
+
+       //  mask for partial memmaps
+
+       mgr->poolmask = (cacheblk >> bits) - 1;
+
+       //      see if requested size of pages per memmap is greater
+
+       if( (1 << segsize) > mgr->poolmask )
+               mgr->poolmask = (1 << segsize) - 1;
+
+       mgr->seg_bits = 0;
+
+       while( (1 << mgr->seg_bits) <= mgr->poolmask )
+               mgr->seg_bits++;
+
+       mgr->hashsize = hashsize;
+
+#ifdef unix
+       mgr->pool = calloc (poolmax, sizeof(BtPool));
+       mgr->hash = calloc (hashsize, sizeof(ushort));
+       mgr->latch = calloc (hashsize, sizeof(BtSpinLatch));
+#else
+       mgr->pool = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, poolmax * sizeof(BtPool));
+       mgr->hash = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort));
+       mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtSpinLatch));
+#endif
+
+       if( size || *amt )
+               goto mgrlatch;
+
+       // initialize an empty b-tree with latch page, root page, page of leaves
+       // and page(s) of latches
+
+       memset (latchmgr, 0, 1 << bits);
+       nlatchpage = BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1; 
+       bt_putid(latchmgr->alloc->right, MIN_lvl+1+nlatchpage);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       latchmgr->nlatchpage = nlatchpage;
+       latchmgr->latchtotal = nlatchpage * (mgr->page_size / sizeof(BtLatchSet));
+
+       //  initialize latch manager
+
+       latchhash = (mgr->page_size - sizeof(BtLatchMgr)) / sizeof(BtHashEntry);
+
+       //      size of hash table = total number of latchsets
+
+       if( latchhash > latchmgr->latchtotal )
+               latchhash = latchmgr->latchtotal;
+
+       latchmgr->latchhash = latchhash;
+
+#ifdef unix
+       if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#else
+       if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+               return bt_mgrclose (mgr), NULL;
+
+       if( *amt < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       memset (latchmgr, 0, 1 << bits);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       for( lvl=MIN_lvl; lvl--; ) {
+               slotptr(latchmgr->alloc, 1)->off = mgr->page_size - 3 - (lvl ? BtId + 1: 1);
+               key = keyptr(latchmgr->alloc, 1);
+               key->len = 2;           // create stopper key
+               key->key[0] = 0xff;
+               key->key[1] = 0xff;
+
+               bt_putid(value, MIN_lvl - lvl + 1);
+               val = valptr(latchmgr->alloc, 1);
+               val->len = lvl ? BtId : 0;
+               memcpy (val->value, value, val->len);
+
+               latchmgr->alloc->min = slotptr(latchmgr->alloc, 1)->off;
+               latchmgr->alloc->lvl = lvl;
+               latchmgr->alloc->cnt = 1;
+               latchmgr->alloc->act = 1;
+#ifdef unix
+               if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#else
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+       }
+
+       // clear out latch manager locks
+       //      and rest of pages to round out segment
+
+       memset(latchmgr, 0, mgr->page_size);
+       last = MIN_lvl + 1;
+
+       while( last <= ((MIN_lvl + 1 + nlatchpage) | mgr->poolmask) ) {
+#ifdef unix
+               pwrite(mgr->idx, latchmgr, mgr->page_size, last << mgr->page_bits);
+#else
+               SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN);
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+               last++;
+       }
+
+mgrlatch:
+#ifdef unix
+       // mlock the root page and the latchmgr page
+
+       flag = PROT_READ | PROT_WRITE;
+       mgr->latchmgr = mmap (0, 2 * mgr->page_size, flag, MAP_SHARED, mgr->idx, ALLOC_page * mgr->page_size);
+       if( mgr->latchmgr == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchmgr, 2 * mgr->page_size);
+
+       mgr->latchsets = (BtLatchSet *)mmap (0, mgr->latchmgr->nlatchpage * mgr->page_size, flag, MAP_SHARED, mgr->idx, LATCH_page * mgr->page_size);
+       if( mgr->latchsets == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+#else
+       flag = PAGE_READWRITE;
+       mgr->halloc = CreateFileMapping(mgr->idx, NULL, flag, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size, NULL);
+       if( !mgr->halloc )
+               return bt_mgrclose (mgr), NULL;
+
+       flag = FILE_MAP_WRITE;
+       mgr->latchmgr = MapViewOfFile(mgr->halloc, flag, 0, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size);
+       if( !mgr->latchmgr )
+               return GetLastError(), bt_mgrclose (mgr), NULL;
+
+       mgr->latchsets = (void *)((char *)mgr->latchmgr + LATCH_page * mgr->page_size);
+#endif
+
+#ifdef unix
+       free (latchmgr);
+#else
+       VirtualFree (latchmgr, 0, MEM_RELEASE);
+#endif
+       return mgr;
+}
+
+//     open BTree access method
+//     based on buffer manager
+
+BtDb *bt_open (BtMgr *mgr)
+{
+BtDb *bt = malloc (sizeof(*bt));
+
+       memset (bt, 0, sizeof(*bt));
+       bt->mgr = mgr;
+#ifdef unix
+       bt->mem = malloc (2 *mgr->page_size);
+#else
+       bt->mem = VirtualAlloc(NULL, 2 * mgr->page_size, MEM_COMMIT, PAGE_READWRITE);
+#endif
+       bt->frame = (BtPage)bt->mem;
+       bt->cursor = (BtPage)(bt->mem + 1 * mgr->page_size);
+       return bt;
+}
+
+//  compare two keys, returning > 0, = 0, or < 0
+//  as the comparison value
+
+int keycmp (BtKey key1, unsigned char *key2, uint len2)
+{
+uint len1 = key1->len;
+int ans;
+
+       if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) )
+               return ans;
+
+       if( len1 > len2 )
+               return 1;
+       if( len1 < len2 )
+               return -1;
+
+       return 0;
+}
+
+//     Buffer Pool mgr
+
+// find segment in pool
+// must be called with hashslot idx locked
+//     return NULL if not there
+//     otherwise return node
+
+BtPool *bt_findpool(BtDb *bt, uid page_no, uint idx)
+{
+BtPool *pool;
+uint slot;
+
+       // compute start of hash chain in pool
+
+       if( slot = bt->mgr->hash[idx] ) 
+               pool = bt->mgr->pool + slot;
+       else
+               return NULL;
+
+       page_no &= ~bt->mgr->poolmask;
+
+       while( pool->basepage != page_no )
+         if( pool = pool->hashnext )
+               continue;
+         else
+               return NULL;
+
+       return pool;
+}
+
+// add segment to hash table
+
+void bt_linkhash(BtDb *bt, BtPool *pool, uid page_no, int idx)
+{
+BtPool *node;
+uint slot;
+
+       pool->hashprev = pool->hashnext = NULL;
+       pool->basepage = page_no & ~bt->mgr->poolmask;
+       pool->pin = CLOCK_bit + 1;
+
+       if( slot = bt->mgr->hash[idx] ) {
+               node = bt->mgr->pool + slot;
+               pool->hashnext = node;
+               node->hashprev = pool;
+       }
+
+       bt->mgr->hash[idx] = pool->slot;
+}
+
+//  map new buffer pool segment to virtual memory
+
+BTERR bt_mapsegment(BtDb *bt, BtPool *pool, uid page_no)
+{
+off64_t off = (page_no & ~bt->mgr->poolmask) << bt->mgr->page_bits;
+off64_t limit = off + ((bt->mgr->poolmask+1) << bt->mgr->page_bits);
+int flag;
+
+#ifdef unix
+       flag = PROT_READ | ( bt->mgr->mode == BT_ro ? 0 : PROT_WRITE );
+       pool->map = mmap (0, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off);
+       if( pool->map == MAP_FAILED )
+               return bt->err = BTERR_map;
+
+#else
+       flag = ( bt->mgr->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE );
+       pool->hmap = CreateFileMapping(bt->mgr->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL);
+       if( !pool->hmap )
+               return bt->err = BTERR_map;
+
+       flag = ( bt->mgr->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE );
+       pool->map = MapViewOfFile(pool->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits);
+       if( !pool->map )
+               return bt->err = BTERR_map;
+#endif
+       return bt->err = 0;
+}
+
+//     calculate page within pool
+
+BtPage bt_page (BtDb *bt, BtPool *pool, uid page_no)
+{
+uint subpage = (uint)(page_no & bt->mgr->poolmask); // page within mapping
+BtPage page;
+
+       page = (BtPage)(pool->map + (subpage << bt->mgr->page_bits));
+//     madvise (page, bt->mgr->page_size, MADV_WILLNEED);
+       return page;
+}
+
+//  release pool pin
+
+void bt_unpinpool (BtPool *pool)
+{
+#ifdef unix
+       __sync_fetch_and_add(&pool->pin, -1);
+#else
+       _InterlockedDecrement16 (&pool->pin);
+#endif
+}
+
+//     find or place requested page in segment-pool
+//     return pool table entry, incrementing pin
+
+BtPool *bt_pinpool(BtDb *bt, uid page_no)
+{
+uint slot, hashidx, idx, victim;
+BtPool *pool, *node, *next;
+
+       //      lock hash table chain
+
+       hashidx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+       bt_spinwritelock (&bt->mgr->latch[hashidx]);
+
+       //      look up in hash table
+
+       if( pool = bt_findpool(bt, page_no, hashidx) ) {
+#ifdef unix
+               __sync_fetch_and_or(&pool->pin, CLOCK_bit);
+               __sync_fetch_and_add(&pool->pin, 1);
+#else
+               _InterlockedOr16 (&pool->pin, CLOCK_bit);
+               _InterlockedIncrement16 (&pool->pin);
+#endif
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // allocate a new pool node
+       // and add to hash table
+
+#ifdef unix
+       slot = __sync_fetch_and_add(&bt->mgr->poolcnt, 1);
+#else
+       slot = _InterlockedIncrement16 (&bt->mgr->poolcnt) - 1;
+#endif
+
+       if( ++slot < bt->mgr->poolmax ) {
+               pool = bt->mgr->pool + slot;
+               pool->slot = slot;
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // pool table is full
+       //      find best pool entry to evict
+
+#ifdef unix
+       __sync_fetch_and_add(&bt->mgr->poolcnt, -1);
+#else
+       _InterlockedDecrement16 (&bt->mgr->poolcnt);
+#endif
+
+       while( 1 ) {
+#ifdef unix
+               victim = __sync_fetch_and_add(&bt->mgr->evicted, 1);
+#else
+               victim = _InterlockedIncrement (&bt->mgr->evicted) - 1;
+#endif
+               victim %= bt->mgr->poolmax;
+               pool = bt->mgr->pool + victim;
+               idx = (uint)(pool->basepage >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+
+               if( !victim )
+                       continue;
+
+               // try to get write lock
+               //      skip entry if not obtained
+
+               if( !bt_spinwritetry (&bt->mgr->latch[idx]) )
+                       continue;
+
+               //      skip this entry if
+               //      page is pinned
+               //  or clock bit is set
+
+               if( pool->pin ) {
+#ifdef unix
+                       __sync_fetch_and_and(&pool->pin, ~CLOCK_bit);
+#else
+                       _InterlockedAnd16 (&pool->pin, ~CLOCK_bit);
+#endif
+                       bt_spinreleasewrite (&bt->mgr->latch[idx]);
+                       continue;
+               }
+
+               // unlink victim pool node from hash table
+
+               if( node = pool->hashprev )
+                       node->hashnext = pool->hashnext;
+               else if( node = pool->hashnext )
+                       bt->mgr->hash[idx] = node->slot;
+               else
+                       bt->mgr->hash[idx] = 0;
+
+               if( node = pool->hashnext )
+                       node->hashprev = pool->hashprev;
+
+               bt_spinreleasewrite (&bt->mgr->latch[idx]);
+
+               //      remove old file mapping
+#ifdef unix
+               munmap (pool->map, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits);
+#else
+//             FlushViewOfFile(pool->map, 0);
+               UnmapViewOfFile(pool->map);
+               CloseHandle(pool->hmap);
+#endif
+               pool->map = NULL;
+
+               //  create new pool mapping
+               //  and link into hash table
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+}
+
+// place write, read, or parent lock on requested page_no.
+
+void bt_lockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadLock (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteLock (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadLock (set->access);
+               break;
+       case BtLockDelete:
+               WriteLock (set->access);
+               break;
+       case BtLockParent:
+               WriteLock (set->parent);
+               break;
+       }
+}
+
+// remove write, read, or parent lock on requested page
+
+void bt_unlockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadRelease (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteRelease (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadRelease (set->access);
+               break;
+       case BtLockDelete:
+               WriteRelease (set->access);
+               break;
+       case BtLockParent:
+               WriteRelease (set->parent);
+               break;
+       }
+}
+
+//     allocate a new page and write page into it
+
+uid bt_newpage(BtDb *bt, BtPage page)
+{
+BtPageSet set[1];
+uid new_page;
+int blk;
+
+       //      lock allocation page
+
+       bt_spinwritelock(bt->mgr->latchmgr->lock);
+
+       // use empty chain first
+       // else allocate empty page
+
+       if( new_page = bt_getid(bt->mgr->latchmgr->chain) ) {
+               if( set->pool = bt_pinpool (bt, new_page) )
+                       set->page = bt_page (bt, set->pool, new_page);
+               else
+                       return 0;
+
+               bt_putid(bt->mgr->latchmgr->chain, bt_getid(set->page->right));
+               bt_unpinpool (set->pool);
+       } else {
+               new_page = bt_getid(bt->mgr->latchmgr->alloc->right);
+               bt_putid(bt->mgr->latchmgr->alloc->right, new_page+1);
+#ifdef unix
+               // if writing first page of pool block, set file length thru last page
+
+               if( (new_page & bt->mgr->poolmask) == 0 )
+                       ftruncate (bt->mgr->idx, (new_page + bt->mgr->poolmask + 1) << bt->mgr->page_bits);
+#endif
+       }
+#ifdef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+
+       //      bring new page into pool and copy page.
+       //      this will extend the file into the new pages on WIN32.
+
+       if( set->pool = bt_pinpool (bt, new_page) )
+               set->page = bt_page (bt, set->pool, new_page);
+       else
+               return 0;
+
+       memcpy(set->page, page, bt->mgr->page_size);
+       bt_unpinpool (set->pool);
+
+#ifndef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+       return new_page;
+}
+
+//  find slot in page for given key at a given level
+
+int bt_findslot (BtPageSet *set, unsigned char *key, uint len)
+{
+uint diff, higher = set->page->cnt, low = 1, slot;
+uint good = 0;
+
+       //        make stopper key an infinite fence value
+
+       if( bt_getid (set->page->right) )
+               higher++;
+       else
+               good++;
+
+       //      low is the lowest candidate.
+       //  loop ends when they meet
+
+       //  higher is already
+       //      tested as .ge. the passed key.
+
+       while( diff = higher - low ) {
+               slot = low + ( diff >> 1 );
+               if( keycmp (keyptr(set->page, slot), key, len) < 0 )
+                       low = slot + 1;
+               else
+                       higher = slot, good++;
+       }
+
+       //      return zero if key is on right link page
+
+       return good ? higher : 0;
+}
+
+//  find and load page at given level for given key
+//     leave page rd or wr locked as requested
+
+int bt_loadpage (BtDb *bt, BtPageSet *set, unsigned char *key, uint len, uint lvl, BtLock lock)
+{
+uid page_no = ROOT_page, prevpage = 0;
+uint drill = 0xff, slot;
+BtLatchSet *prevlatch;
+uint mode, prevmode;
+BtPool *prevpool;
+
+  //  start at root of btree and drill down
+
+  do {
+       // determine lock mode of drill level
+       mode = (drill == lvl) ? lock : BtLockRead; 
+
+       set->latch = bt_pinlatch (bt, page_no);
+       set->page_no = page_no;
+
+       // pin page contents
+
+       if( set->pool = bt_pinpool (bt, page_no) )
+               set->page = bt_page (bt, set->pool, page_no);
+       else
+               return 0;
+
+       // obtain access lock using lock chaining with Access mode
+
+       if( page_no > ROOT_page )
+         bt_lockpage(BtLockAccess, set->latch);
+
+       //      release & unpin parent page
+
+       if( prevpage ) {
+         bt_unlockpage(prevmode, prevlatch);
+         bt_unpinlatch (prevlatch);
+         bt_unpinpool (prevpool);
+         prevpage = 0;
+       }
+
+       // obtain read lock using lock chaining
+
+       bt_lockpage(mode, set->latch);
+
+       if( set->page->free )
+               return bt->err = BTERR_struct, 0;
+
+       if( page_no > ROOT_page )
+         bt_unlockpage(BtLockAccess, set->latch);
+
+       // re-read and re-lock root after determining actual level of root
+
+       if( set->page->lvl != drill) {
+               if( set->page_no != ROOT_page )
+                       return bt->err = BTERR_struct, 0;
+                       
+               drill = set->page->lvl;
+
+               if( lock != BtLockRead && drill == lvl ) {
+                 bt_unlockpage(mode, set->latch);
+                 bt_unpinlatch (set->latch);
+                 bt_unpinpool (set->pool);
+                 continue;
+               }
+       }
+
+       prevpage = set->page_no;
+       prevlatch = set->latch;
+       prevpool = set->pool;
+       prevmode = mode;
+
+       //  find key on page at this level
+       //  and descend to requested level
+
+       if( set->page->kill )
+         goto slideright;
+
+       if( slot = bt_findslot (set, key, len) ) {
+         if( drill == lvl )
+               return slot;
+
+         while( slotptr(set->page, slot)->dead )
+               if( slot++ < set->page->cnt )
+                       continue;
+               else
+                       goto slideright;
+
+         page_no = bt_getid(valptr(set->page, slot)->value);
+         drill--;
+         continue;
+       }
+
+       //  or slide right into next page
+
+slideright:
+       page_no = bt_getid(set->page->right);
+
+  } while( page_no );
+
+  // return error on end of right chain
+
+  bt->err = BTERR_struct;
+  return 0;    // return error
+}
+
+//     return page to free list
+//     page must be delete & write locked
+
+void bt_freepage (BtDb *bt, BtPageSet *set)
+{
+       //      lock allocation page
+
+       bt_spinwritelock (bt->mgr->latchmgr->lock);
+
+       //      store chain
+       memcpy(set->page->right, bt->mgr->latchmgr->chain, BtId);
+       bt_putid(bt->mgr->latchmgr->chain, set->page_no);
+       set->page->free = 1;
+
+       // unlock released page
+
+       bt_unlockpage (BtLockDelete, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       // unlock allocation page
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->lock);
+}
+
+//     a fence key was deleted from a page
+//     push new fence value upwards
+
+BTERR bt_fixfence (BtDb *bt, BtPageSet *set, uint lvl)
+{
+unsigned char leftkey[256], rightkey[256];
+unsigned char value[BtId];
+BtKey ptr;
+
+       //      remove the old fence value
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (rightkey, ptr, ptr->len + 1);
+       memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot));
+
+       //  cache new fence value
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (leftkey, ptr, ptr->len + 1);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       //      insert new (now smaller) fence key
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, leftkey+1, *leftkey, lvl+1, value, BtId, 1) )
+         return bt->err;
+
+       //      now delete old fence key
+
+       if( bt_deletekey (bt, rightkey+1, *rightkey, lvl+1) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch(set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+//     root has a single child
+//     collapse a level from the tree
+
+BTERR bt_collapseroot (BtDb *bt, BtPageSet *root)
+{
+BtPageSet child[1];
+uint idx;
+
+  // find the child entry and promote as new root contents
+
+  do {
+       for( idx = 0; idx++ < root->page->cnt; )
+         if( !slotptr(root->page, idx)->dead )
+               break;
+
+       child->page_no = bt_getid (valptr(root->page, idx)->value);
+
+       child->latch = bt_pinlatch (bt, child->page_no);
+       bt_lockpage (BtLockDelete, child->latch);
+       bt_lockpage (BtLockWrite, child->latch);
+
+       if( child->pool = bt_pinpool (bt, child->page_no) )
+               child->page = bt_page (bt, child->pool, child->page_no);
+       else
+               return bt->err;
+
+       memcpy (root->page, child->page, bt->mgr->page_size);
+       bt_freepage (bt, child);
+
+  } while( root->page->lvl > 1 && root->page->act == 1 );
+
+  bt_unlockpage (BtLockWrite, root->latch);
+  bt_unpinlatch (root->latch);
+  bt_unpinpool (root->pool);
+  return 0;
+}
+
+//  find and delete key on page by marking delete flag bit
+//  if page becomes empty, delete it from the btree
+
+BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl)
+{
+unsigned char lowerfence[256], higherfence[256];
+uint slot, idx, found, fence;
+BtPageSet set[1], right[1];
+unsigned char value[BtId];
+BtKey ptr, tst;
+BtVal val;
+
+       if( slot = bt_loadpage (bt, set, key, len, lvl, BtLockWrite) )
+               ptr = keyptr(set->page, slot);
+       else
+               return bt->err;
+
+       // if librarian slot, advance to real slot
+
+       if( slotptr(set->page, slot)->type == Librarian )
+               ptr = keyptr(set->page, ++slot);
+
+       fence = slot == set->page->cnt;
+
+       // if key is found delete it, otherwise ignore request
+
+       if( found = !keycmp (ptr, key, len) )
+         if( found = slotptr(set->page, slot)->dead == 0 ) {
+               val = valptr(set->page,slot);
+               slotptr(set->page, slot)->dead = 1;
+               set->page->garbage += ptr->len + val->len + 2;
+               set->page->act--;
+
+               // collapse empty slots beneath our fence
+
+               while( idx = set->page->cnt - 1 )
+                 if( slotptr(set->page, idx)->dead ) {
+                       *slotptr(set->page, idx) = *slotptr(set->page, idx + 1);
+                       memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot));
+                 } else
+                       break;
+         }
+
+       //      did we delete a fence key in an upper level?
+
+       if( found && lvl && fence && set->page->act )
+         if( bt_fixfence (bt, set, lvl) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      do we need to collapse root?
+
+       if( lvl > 1 && set->page_no == ROOT_page && set->page->act == 1 )
+         if( bt_collapseroot (bt, set) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      return if page is not empty
+
+       if( set->page->act ) {
+               bt_unlockpage(BtLockWrite, set->latch);
+               bt_unpinlatch (set->latch);
+               bt_unpinpool (set->pool);
+               return bt->found = found, 0;
+       }
+
+       //      cache copy of fence key
+       //      to post in parent
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (lowerfence, ptr, ptr->len + 1);
+
+       //      obtain lock on right page
+
+       right->page_no = bt_getid(set->page->right);
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockWrite, right->latch);
+
+       // pin page contents
+
+       if( right->pool = bt_pinpool (bt, right->page_no) )
+               right->page = bt_page (bt, right->pool, right->page_no);
+       else
+               return 0;
+
+       if( right->page->kill )
+               return bt->err = BTERR_struct;
+
+       // pull contents of right peer into our empty page
+
+       memcpy (set->page, right->page, bt->mgr->page_size);
+
+       // cache copy of key to update
+
+       ptr = keyptr(right->page, right->page->cnt);
+       memcpy (higherfence, ptr, ptr->len + 1);
+
+       // mark right page deleted and point it to left page
+       //      until we can post parent updates
+
+       bt_putid (right->page->right, set->page_no);
+       right->page->kill = 1;
+
+       bt_lockpage (BtLockParent, right->latch);
+       bt_unlockpage (BtLockWrite, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // redirect higher key directly to our new node contents
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, higherfence+1, *higherfence, lvl+1, value, BtId, 1) )
+         return bt->err;
+
+       //      delete old lower key to our node
+
+       if( bt_deletekey (bt, lowerfence+1, *lowerfence, lvl+1) )
+         return bt->err;
+
+       //      obtain delete and write locks to right node
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_lockpage (BtLockDelete, right->latch);
+       bt_lockpage (BtLockWrite, right->latch);
+       bt_freepage (bt, right);
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       bt->found = found;
+       return 0;
+}
+
+BtKey bt_foundkey (BtDb *bt)
+{
+       return (BtKey)(bt->key);
+}
+
+//     advance to next slot
+
+uint bt_findnext (BtDb *bt, BtPageSet *set, uint slot)
+{
+BtLatchSet *prevlatch;
+BtPool *prevpool;
+uid page_no;
+
+       if( slot < set->page->cnt )
+               return slot + 1;
+
+       prevlatch = set->latch;
+       prevpool = set->pool;
+
+       if( page_no = bt_getid(set->page->right) )
+               set->latch = bt_pinlatch (bt, page_no);
+       else
+               return bt->err = BTERR_struct, 0;
+
+       // pin page contents
+
+       if( set->pool = bt_pinpool (bt, page_no) )
+               set->page = bt_page (bt, set->pool, page_no);
+       else
+               return 0;
+
+       // obtain access lock using lock chaining with Access mode
+
+       bt_lockpage(BtLockAccess, set->latch);
+
+       bt_unlockpage(BtLockRead, prevlatch);
+       bt_unpinlatch (prevlatch);
+       bt_unpinpool (prevpool);
+
+       bt_lockpage(BtLockRead, set->latch);
+       bt_unlockpage(BtLockAccess, set->latch);
+
+       set->page_no = page_no;
+       return 1;
+}
+
+//     find unique key or first duplicate key in
+//     leaf level and return number of value bytes
+//     or (-1) if not found.  Setup key for bt_foundkey
+
+int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax)
+{
+BtPageSet set[1];
+uint len, slot;
+int ret = -1;
+BtKey ptr;
+BtVal val;
+
+  if( slot = bt_loadpage (bt, set, key, keylen, 0, BtLockRead) )
+   do {
+       ptr = keyptr(set->page, slot);
+
+       //      skip librarian slot place holder
+
+       if( slotptr(set->page, slot)->type == Librarian )
+               ptr = keyptr(set->page, ++slot);
+
+       if( slotptr(set->page, slot)->dead )
+               continue;
+
+       //      return actual key found
+
+       memcpy (bt->key, ptr, ptr->len + 1);
+       len = ptr->len;
+
+       if( slotptr(set->page, slot)->type == Duplicate )
+               len -= BtId;
+
+       // if key exists, return >= 0 value bytes copied
+       //      otherwise return (-1)
+
+       if( keylen == len )
+         if( !memcmp (ptr->key, key, len) ) {
+               val = valptr (set->page,slot);
+               if( valmax > val->len )
+                       valmax = val->len;
+               memcpy (value, val->value, valmax);
+               ret = valmax;
+         }
+
+       break;
+
+   } while( slot = bt_findnext (bt, set, slot) );
+
+  bt_unlockpage (BtLockRead, set->latch);
+  bt_unpinlatch (set->latch);
+  bt_unpinpool (set->pool);
+  return ret;
+}
+
+//     check page for space available,
+//     clean if necessary and return
+//     0 - page needs splitting
+//     >0  new slot value
+
+uint bt_cleanpage(BtDb *bt, BtPage page, uint keylen, uint slot, uint vallen)
+{
+uint nxt = bt->mgr->page_size;
+uint cnt = 0, idx = 0;
+uint max = page->cnt;
+uint newslot = max;
+BtKey key;
+BtVal val;
+
+       if( page->min >= (max+2) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1)
+               return slot;
+
+       //      skip cleanup and proceed to split
+       //      if there's not enough garbage
+       //      to bother with.
+
+       if( page->garbage < nxt / 5 )
+               return 0;
+
+       memcpy (bt->frame, page, bt->mgr->page_size);
+
+       // skip page info and set rest of page to zero
+
+       memset (page+1, 0, bt->mgr->page_size - sizeof(*page));
+       page->garbage = 0;
+       page->act = 0;
+
+       // clean up page first by
+       // removing deleted keys
+
+       while( cnt++ < max ) {
+               if( cnt == slot )
+                       newslot = idx + 2;
+               if( cnt < max && slotptr(bt->frame,cnt)->dead )
+                       continue;
+
+               // copy the value across
+
+               val = valptr(bt->frame, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)page)[nxt] = val->len;
+               memcpy ((unsigned char *)page + nxt + 1, val->value, val->len);
+
+               // copy the key across
+
+               key = keyptr(bt->frame, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)page + nxt, key, key->len + 1);
+
+               // make a librarian slot
+
+               if( idx ) {
+                       slotptr(page, ++idx)->off = nxt;
+                       slotptr(page, idx)->type = Librarian;
+                       slotptr(page, idx)->dead = 1;
+               }
+
+               // set up the slot
+
+               slotptr(page, ++idx)->off = nxt;
+               slotptr(page, idx)->type = slotptr(bt->frame, cnt)->type;
+
+               if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) )
+                       page->act++;
+       }
+
+       page->min = nxt;
+       page->cnt = idx;
+
+       //      see if page has enough space now, or does it need splitting?
+
+       if( page->min >= (idx+2) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1 )
+               return newslot;
+
+       return 0;
+}
+
+// split the root and raise the height of the btree
+
+BTERR bt_splitroot(BtDb *bt, BtPageSet *root, unsigned char *leftkey, uid page_no2)
+{
+uint nxt = bt->mgr->page_size;
+unsigned char value[BtId];
+uid left;
+
+       //  Obtain an empty page to use, and copy the current
+       //  root contents into it, e.g. lower keys
+
+       if( !(left = bt_newpage(bt, root->page)) )
+               return bt->err;
+
+       // preserve the page info at the bottom
+       // of higher keys and set rest to zero
+
+       memset(root->page+1, 0, bt->mgr->page_size - sizeof(*root->page));
+
+       // insert lower keys page fence key on newroot page as first key
+
+       nxt -= BtId + 1;
+       bt_putid (value, left);
+       ((unsigned char *)root->page)[nxt] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 1, value, BtId);
+
+       nxt -= *leftkey + 1;
+       memcpy ((unsigned char *)root->page + nxt, leftkey, *leftkey + 1);
+       slotptr(root->page, 1)->off = nxt;
+       
+       // insert stopper key on newroot page
+       // and increase the root height
+
+       nxt -= 3 + BtId + 1;
+       ((unsigned char *)root->page)[nxt] = 2;
+       ((unsigned char *)root->page)[nxt+1] = 0xff;
+       ((unsigned char *)root->page)[nxt+2] = 0xff;
+
+       bt_putid (value, page_no2);
+       ((unsigned char *)root->page)[nxt+3] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 4, value, BtId);
+       slotptr(root->page, 2)->off = nxt;
+
+       bt_putid(root->page->right, 0);
+       root->page->min = nxt;          // reset lowest used offset and key count
+       root->page->cnt = 2;
+       root->page->act = 2;
+       root->page->lvl++;
+
+       // release and unpin root
+
+       bt_unlockpage(BtLockWrite, root->latch);
+       bt_unpinlatch (root->latch);
+       bt_unpinpool (root->pool);
+       return 0;
+}
+
+//  split already locked full node
+//     return unlocked.
+
+BTERR bt_splitpage (BtDb *bt, BtPageSet *set)
+{
+uint cnt = 0, idx = 0, max, nxt = bt->mgr->page_size;
+unsigned char fencekey[256], rightkey[256];
+unsigned char value[BtId];
+uint lvl = set->page->lvl;
+BtPageSet right[1];
+uint prev;
+BtKey key;
+BtVal val;
+
+       //  split higher half of keys to bt->frame
+
+       memset (bt->frame, 0, bt->mgr->page_size);
+       max = set->page->cnt;
+       cnt = max / 2;
+       idx = 0;
+
+       while( cnt++ < max ) {
+               if( slotptr(set->page, cnt)->dead && cnt < max )
+                       continue;
+               val = valptr(set->page, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)bt->frame)[nxt] = val->len;
+               memcpy ((unsigned char *)bt->frame + nxt + 1, val->value, val->len);
+
+               key = keyptr(set->page, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)bt->frame + nxt, key, key->len + 1);
+
+               //      add librarian slot
+
+               if( idx ) {
+                       slotptr(bt->frame, ++idx)->off = nxt;
+                       slotptr(bt->frame, idx)->type = Librarian;
+                       slotptr(bt->frame, idx)->dead = 1;
+               }
+
+               //  add actual slot
+
+               slotptr(bt->frame, ++idx)->off = nxt;
+               slotptr(bt->frame, idx)->type = slotptr(set->page, cnt)->type;
+
+               if( !(slotptr(bt->frame, idx)->dead = slotptr(set->page, cnt)->dead) )
+                       bt->frame->act++;
+       }
+
+       // remember existing fence key for new page to the right
+
+       memcpy (rightkey, key, key->len + 1);
+
+       bt->frame->bits = bt->mgr->page_bits;
+       bt->frame->min = nxt;
+       bt->frame->cnt = idx;
+       bt->frame->lvl = lvl;
+
+       // link right node
+
+       if( set->page_no > ROOT_page )
+               memcpy (bt->frame->right, set->page->right, BtId);
+
+       //      get new free page and write higher keys to it.
+
+       if( !(right->page_no = bt_newpage(bt, bt->frame)) )
+               return bt->err;
+
+       //      update lower keys to continue in old page
+
+       memcpy (bt->frame, set->page, bt->mgr->page_size);
+       memset (set->page+1, 0, bt->mgr->page_size - sizeof(*set->page));
+       nxt = bt->mgr->page_size;
+       set->page->garbage = 0;
+       set->page->act = 0;
+       max /= 2;
+       cnt = 0;
+       idx = 0;
+
+       if( slotptr(bt->frame, max)->type == Librarian )
+               max--;
+
+       //  assemble page of smaller keys
+
+       while( cnt++ < max ) {
+               if( slotptr(bt->frame, cnt)->dead )
+                       continue;
+               val = valptr(bt->frame, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)set->page)[nxt] = val->len;
+               memcpy ((unsigned char *)set->page + nxt + 1, val->value, val->len);
+
+               key = keyptr(bt->frame, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)set->page + nxt, key, key->len + 1);
+
+               //      add librarian slot
+
+               if( idx ) {
+                       slotptr(set->page, ++idx)->off = nxt;
+                       slotptr(set->page, idx)->type = Librarian;
+                       slotptr(set->page, idx)->dead = 1;
+               }
+
+               //      add actual slot
+
+               slotptr(set->page, ++idx)->off = nxt;
+               slotptr(set->page, idx)->type = slotptr(bt->frame, cnt)->type;
+               set->page->act++;
+       }
+
+       // remember fence key for smaller page
+
+       memcpy(fencekey, key, key->len + 1);
+
+       bt_putid(set->page->right, right->page_no);
+       set->page->min = nxt;
+       set->page->cnt = idx;
+
+       // if current page is the root page, split it
+
+       if( set->page_no == ROOT_page )
+               return bt_splitroot (bt, set, fencekey, right->page_no);
+
+       // insert new fences in their parent pages
+
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockParent, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // insert new fence for reformulated left block of smaller keys
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, fencekey+1, *fencekey, lvl+1, value, BtId, 1) )
+               return bt->err;
+
+       // switch fence for right block of larger keys to new right page
+
+       bt_putid (value, right->page_no);
+
+       if( bt_insertkey (bt, rightkey+1, *rightkey, lvl+1, value, BtId, 1) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_unpinlatch (right->latch);
+       return 0;
+}
+
+//     install new key and value onto page
+//     page must already be checked for
+//     adequate space
+
+BTERR bt_insertslot (BtDb *bt, BtPageSet *set, uint slot, unsigned char *key,uint keylen, unsigned char *value, uint vallen, uint type)
+{
+uint idx, librarian;
+BtSlot *node;
+
+       //      if found slot > desired slot and previous slot
+       //      is a librarian slot, use it
+
+       if( slot > 1 )
+         if( slotptr(set->page, slot-1)->type == Librarian )
+               slot--;
+
+       // copy value onto page
+
+       set->page->min -= vallen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = vallen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, value, vallen );
+
+       // copy key onto page
+
+       set->page->min -= keylen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = keylen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, key, keylen );
+
+       //      find first empty slot
+
+       for( idx = slot; idx < set->page->cnt; idx++ )
+         if( slotptr(set->page, idx)->dead )
+               break;
+
+       // now insert key into array before slot
+
+       if( idx == set->page->cnt )
+               idx += 2, set->page->cnt += 2, librarian = 2;
+       else
+               librarian = 1;
+
+       set->page->act++;
+
+       while( idx > slot + librarian - 1 )
+               *slotptr(set->page, idx) = *slotptr(set->page, idx - librarian), idx--;
+
+       //      add librarian slot
+
+       if( librarian > 1 ) {
+               node = slotptr(set->page, slot++);
+               node->off = set->page->min;
+               node->type = Librarian;
+               node->dead = 1;
+       }
+
+       //      fill in new slot
+
+       node = slotptr(set->page, slot);
+       node->off = set->page->min;
+       node->type = type;
+       node->dead = 0;
+
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+//  Insert new key into the btree at given level.
+//     either add a new key or update/add an existing one
+
+BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint keylen, uint lvl, void *value, uint vallen, uint unique)
+{
+unsigned char newkey[256];
+uint slot, idx, len;
+BtPageSet set[1];
+uid sequence;
+BtKey ptr;
+BtVal val;
+uint type;
+
+  // set up the key we're working on
+
+  memcpy (newkey + 1, key, keylen);
+  newkey[0] = keylen;
+
+  // is this a non-unique index value?
+
+  if( unique )
+       type = Unique;
+  else {
+       type = Duplicate;
+       sequence = bt_newdup (bt);
+       bt_putid (newkey + *newkey + 1, sequence);
+       *newkey += BtId;
+  }
+
+  while( 1 ) { // find the page and slot for the current key
+       if( slot = bt_loadpage (bt, set, newkey + 1, *newkey, lvl, BtLockWrite) )
+               ptr = keyptr(set->page, slot);
+       else {
+               if( !bt->err )
+                       bt->err = BTERR_ovflw;
+               return bt->err;
+       }
+
+       // if librarian slot == found slot, advance to real slot
+
+       if( slotptr(set->page, slot)->type == Librarian )
+         if( !keycmp (ptr, key, keylen) )
+               ptr = keyptr(set->page, ++slot);
+
+       len = ptr->len;
+
+       if( slotptr(set->page, slot)->type == Duplicate )
+               len -= BtId;
+
+       //  if inserting a duplicate key or unique key
+       //      check for adequate space on the page
+       //      and insert the new key before slot.
+
+       if( unique && (len != *newkey || memcmp (ptr->key, newkey+1, *newkey)) || !unique ) {
+         if( !(slot = bt_cleanpage (bt, set->page, *newkey, slot, vallen)) )
+               if( bt_splitpage (bt, set) )
+                 return bt->err;
+               else
+                 continue;
+
+         return bt_insertslot (bt, set, slot, newkey + 1, *newkey, value, vallen, type);
+       }
+
+       // if key already exists, update value and return
+
+       if( val = valptr(set->page, slot), val->len >= vallen ) {
+               if( slotptr(set->page, slot)->dead )
+                       set->page->act++;
+               set->page->garbage += val->len - vallen;
+               slotptr(set->page, slot)->dead = 0;
+               val->len = vallen;
+               memcpy (val->value, value, vallen);
+               bt_unlockpage(BtLockWrite, set->latch);
+               bt_unpinlatch (set->latch);
+               bt_unpinpool (set->pool);
+               return 0;
+       }
+
+       //      new update value doesn't fit in existing value area
+
+       if( !slotptr(set->page, slot)->dead )
+               set->page->garbage += val->len + ptr->len + 2;
+       else {
+               slotptr(set->page, slot)->dead = 0;
+               set->page->act++;
+       }
+
+       if( !(slot = bt_cleanpage (bt, set->page, keylen, slot, vallen)) )
+         if( bt_splitpage (bt, set) )
+               return bt->err;
+         else
+               continue;
+
+       set->page->min -= vallen + 1;
+       ((unsigned char *)set->page)[set->page->min] = vallen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, value, vallen);
+
+       set->page->min -= keylen + 1;
+       ((unsigned char *)set->page)[set->page->min] = keylen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, key, keylen);
+       
+       slotptr(set->page, slot)->off = set->page->min;
+       bt_unlockpage(BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+  }
+  return 0;
+}
+
+//  return next slot for cursor page
+//  or slide cursor right into next page
+
+uint bt_nextkey (BtDb *bt, uint slot)
+{
+BtPageSet set[1];
+uid right;
+
+  do {
+       right = bt_getid(bt->cursor->right);
+
+       while( slot++ < bt->cursor->cnt )
+         if( slotptr(bt->cursor,slot)->dead )
+               continue;
+         else if( right || (slot < bt->cursor->cnt) ) // skip infinite stopper
+               return slot;
+         else
+               break;
+
+       if( !right )
+               break;
+
+       bt->cursor_page = right;
+
+       if( set->pool = bt_pinpool (bt, right) )
+               set->page = bt_page (bt, set->pool, right);
+       else
+               return 0;
+
+       set->latch = bt_pinlatch (bt, right);
+    bt_lockpage(BtLockRead, set->latch);
+
+       memcpy (bt->cursor, set->page, bt->mgr->page_size);
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       slot = 0;
+
+  } while( 1 );
+
+  return bt->err = 0;
+}
+
+//  cache page of keys into cursor and return starting slot for given key
+
+uint bt_startkey (BtDb *bt, unsigned char *key, uint len)
+{
+BtPageSet set[1];
+uint slot;
+
+       // cache page for retrieval
+
+       if( slot = bt_loadpage (bt, set, key, len, 0, BtLockRead) )
+         memcpy (bt->cursor, set->page, bt->mgr->page_size);
+       else
+         return 0;
+
+       bt->cursor_page = set->page_no;
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return slot;
+}
+
+BtKey bt_key(BtDb *bt, uint slot)
+{
+       return keyptr(bt->cursor, slot);
+}
+
+BtVal bt_val(BtDb *bt, uint slot)
+{
+       return valptr(bt->cursor,slot);
+}
+
+#ifdef STANDALONE
+
+#ifndef unix
+double getCpuTime(int type)
+{
+FILETIME crtime[1];
+FILETIME xittime[1];
+FILETIME systime[1];
+FILETIME usrtime[1];
+SYSTEMTIME timeconv[1];
+double ans = 0;
+
+       memset (timeconv, 0, sizeof(SYSTEMTIME));
+
+       switch( type ) {
+       case 0:
+               GetSystemTimeAsFileTime (xittime);
+               FileTimeToSystemTime (xittime, timeconv);
+               ans = (double)timeconv->wDayOfWeek * 3600 * 24;
+               break;
+       case 1:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (usrtime, timeconv);
+               break;
+       case 2:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (systime, timeconv);
+               break;
+       }
+
+       ans += (double)timeconv->wHour * 3600;
+       ans += (double)timeconv->wMinute * 60;
+       ans += (double)timeconv->wSecond;
+       ans += (double)timeconv->wMilliseconds / 1000;
+       return ans;
+}
+#else
+#include <time.h>
+#include <sys/resource.h>
+
+double getCpuTime(int type)
+{
+struct rusage used[1];
+struct timeval tv[1];
+
+       switch( type ) {
+       case 0:
+               gettimeofday(tv, NULL);
+               return (double)tv->tv_sec + (double)tv->tv_usec / 1000000;
+
+       case 1:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000;
+
+       case 2:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000;
+       }
+
+       return 0;
+}
+#endif
+
+uint bt_latchaudit (BtDb *bt)
+{
+ushort idx, hashidx;
+uid next, page_no;
+BtLatchSet *latch;
+uint cnt = 0;
+BtKey ptr;
+
+#ifdef unix
+       posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+       if( *(ushort *)(bt->mgr->latchmgr->lock) )
+               fprintf(stderr, "Alloc page locked\n");
+       *(ushort *)(bt->mgr->latchmgr->lock) = 0;
+
+       for( idx = 1; idx <= bt->mgr->latchmgr->latchdeployed; idx++ ) {
+               latch = bt->mgr->latchsets + idx;
+               if( *latch->readwr->rin & MASK )
+                       fprintf(stderr, "latchset %d rwlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->readwr, 0, sizeof(RWLock));
+
+               if( *latch->access->rin & MASK )
+                       fprintf(stderr, "latchset %d accesslocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->access, 0, sizeof(RWLock));
+
+               if( *latch->parent->rin & MASK )
+                       fprintf(stderr, "latchset %d parentlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->parent, 0, sizeof(RWLock));
+
+               if( latch->pin ) {
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+                       latch->pin = 0;
+               }
+       }
+
+       for( hashidx = 0; hashidx < bt->mgr->latchmgr->latchhash; hashidx++ ) {
+         if( *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) )
+                       fprintf(stderr, "hash entry %d locked\n", hashidx);
+
+         *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) = 0;
+
+         if( idx = bt->mgr->latchmgr->table[hashidx].slot ) do {
+               latch = bt->mgr->latchsets + idx;
+               if( *(ushort *)latch->busy )
+                       fprintf(stderr, "latchset %d busylocked for page %.8x\n", idx, latch->page_no);
+               *(ushort *)latch->busy = 0;
+               if( latch->pin )
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+         } while( idx = latch->next );
+       }
+
+       next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+       page_no = LEAF_page;
+
+       while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+       off64_t off = page_no << bt->mgr->page_bits;
+#ifdef unix
+               pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+
+                 if( *amt <  bt->mgr->page_size )
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+#endif
+               if( !bt->frame->free ) {
+                for( idx = 0; idx++ < bt->frame->cnt - 1; ) {
+                 ptr = keyptr(bt->frame, idx+1);
+                 if( keycmp (keyptr(bt->frame, idx), ptr->key, ptr->len) >= 0 )
+                       fprintf(stderr, "page %.8x idx %.2x out of order\n", page_no, idx);
+                }
+                if( !bt->frame->lvl )
+                       cnt += bt->frame->act;
+               }
+               if( page_no > LEAF_page )
+                       next = page_no + 1;
+               page_no = next;
+       }
+       return cnt - 1;
+}
+
+typedef struct {
+       char idx;
+       char *type;
+       char *infile;
+       BtMgr *mgr;
+       int num;
+} ThreadArg;
+
+//  standalone program to index file of keys
+//  then list them onto std-out
+
+#ifdef unix
+void *index_file (void *arg)
+#else
+uint __stdcall index_file (void *arg)
+#endif
+{
+int line = 0, found = 0, cnt = 0;
+uid next, page_no = LEAF_page; // start on first page of leaves
+unsigned char key[256];
+ThreadArg *args = arg;
+int ch, len = 0, slot;
+BtPageSet set[1];
+BtKey ptr;
+BtDb *bt;
+FILE *in;
+
+       bt = bt_open (args->mgr);
+
+       switch(args->type[0] | 0x20)
+       {
+       case 'a':
+               fprintf(stderr, "started latch mgr audit\n");
+               cnt = bt_latchaudit (bt);
+               fprintf(stderr, "finished latch mgr audit, found %d keys\n", cnt);
+               break;
+
+       case 'p':
+               fprintf(stderr, "started pennysort for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( bt_insertkey (bt, key, 10, 0, key + 10, len - 10, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'w':
+               fprintf(stderr, "started indexing for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_insertkey (bt, key, len, 0, NULL, 0, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'd':
+               fprintf(stderr, "started deleting keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_findkey (bt, key, len, NULL, 0) < 0 )
+                               fprintf(stderr, "Cannot find key for Line: %d\n", line), exit(0);
+                         ptr = (BtKey)(bt->key);
+
+                         if( bt_deletekey (bt, ptr->key, ptr->len, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         found += bt->found;
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys, %d found\n", args->infile, line, found);
+               break;
+
+       case 'f':
+               fprintf(stderr, "started finding keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_findkey (bt, key, len, NULL, 0) == 0 )
+                               found++;
+                         else if( bt->err )
+                               fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found);
+               break;
+
+       case 's':
+               fprintf(stderr, "started scanning\n");
+               do {
+                       if( set->pool = bt_pinpool (bt, page_no) )
+                               set->page = bt_page (bt, set->pool, page_no);
+                       else
+                               break;
+                       set->latch = bt_pinlatch (bt, page_no);
+                       bt_lockpage (BtLockRead, set->latch);
+                       next = bt_getid (set->page->right);
+
+                       for( slot = 0; slot++ < set->page->cnt; )
+                        if( next || slot < set->page->cnt )
+                         if( !slotptr(set->page, slot)->dead ) {
+                               ptr = keyptr(set->page, slot);
+                               len = ptr->len;
+
+                           if( slotptr(set->page, slot)->type == Duplicate )
+                                       len -= BtId;
+
+                               fwrite (ptr->key, len, 1, stdout);
+                               fputc ('\n', stdout);
+                               cnt++;
+                          }
+
+                       bt_unlockpage (BtLockRead, set->latch);
+                       bt_unpinlatch (set->latch);
+                       bt_unpinpool (set->pool);
+               } while( page_no = next );
+
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+
+       case 'c':
+#ifdef unix
+               posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+               fprintf(stderr, "started counting\n");
+               next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+               page_no = LEAF_page;
+
+               while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+               uid off = page_no << bt->mgr->page_bits;
+#ifdef unix
+                 pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       return bt->err = BTERR_map;
+
+                 if( *amt <  bt->mgr->page_size )
+                       return bt->err = BTERR_map;
+#endif
+                       if( !bt->frame->free && !bt->frame->lvl )
+                               cnt += bt->frame->act;
+                       if( page_no > LEAF_page )
+                               next = page_no + 1;
+                       page_no = next;
+               }
+               
+               cnt--;  // remove stopper key
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+       }
+
+       bt_close (bt);
+#ifdef unix
+       return NULL;
+#else
+       return 0;
+#endif
+}
+
+typedef struct timeval timer;
+
+int main (int argc, char **argv)
+{
+int idx, cnt, len, slot, err;
+int segsize, bits = 16;
+double start, stop;
+#ifdef unix
+pthread_t *threads;
+#else
+HANDLE *threads;
+#endif
+ThreadArg *args;
+uint poolsize = 0;
+float elapsed;
+int num = 0;
+char key[1];
+BtMgr *mgr;
+BtKey ptr;
+BtDb *bt;
+
+       if( argc < 3 ) {
+               fprintf (stderr, "Usage: %s idx_file Read/Write/Scan/Delete/Find [page_bits mapped_segments seg_bits line_numbers src_file1 src_file2 ... ]\n", argv[0]);
+               fprintf (stderr, "  where page_bits is the page size in bits\n");
+               fprintf (stderr, "  mapped_segments is the number of mmap segments in buffer pool\n");
+               fprintf (stderr, "  seg_bits is the size of individual segments in buffer pool in pages in bits\n");
+               fprintf (stderr, "  line_numbers = 1 to append line numbers to keys\n");
+               fprintf (stderr, "  src_file1 thru src_filen are files of keys separated by newline\n");
+               exit(0);
+       }
+
+       start = getCpuTime(0);
+
+       if( argc > 3 )
+               bits = atoi(argv[3]);
+
+       if( argc > 4 )
+               poolsize = atoi(argv[4]);
+
+       if( !poolsize )
+               fprintf (stderr, "Warning: no mapped_pool\n");
+
+       if( poolsize > 65535 )
+               fprintf (stderr, "Warning: mapped_pool > 65535 segments\n");
+
+       if( argc > 5 )
+               segsize = atoi(argv[5]);
+       else
+               segsize = 4;    // 16 pages per mmap segment
+
+       if( argc > 6 )
+               num = atoi(argv[6]);
+
+       cnt = argc - 7;
+#ifdef unix
+       threads = malloc (cnt * sizeof(pthread_t));
+#else
+       threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE));
+#endif
+       args = malloc (cnt * sizeof(ThreadArg));
+
+       mgr = bt_mgr ((argv[1]), BT_rw, bits, poolsize, segsize, poolsize / 8);
+
+       if( !mgr ) {
+               fprintf(stderr, "Index Open Error %s\n", argv[1]);
+               exit (1);
+       }
+
+       //      fire off threads
+
+       for( idx = 0; idx < cnt; idx++ ) {
+               args[idx].infile = argv[idx + 7];
+               args[idx].type = argv[2];
+               args[idx].mgr = mgr;
+               args[idx].num = num;
+               args[idx].idx = idx;
+#ifdef unix
+               if( err = pthread_create (threads + idx, NULL, index_file, args + idx) )
+                       fprintf(stderr, "Error creating thread %d\n", err);
+#else
+               threads[idx] = (HANDLE)_beginthreadex(NULL, 65536, index_file, args + idx, 0, NULL);
+#endif
+       }
+
+       //      wait for termination
+
+#ifdef unix
+       for( idx = 0; idx < cnt; idx++ )
+               pthread_join (threads[idx], NULL);
+#else
+       WaitForMultipleObjects (cnt, threads, TRUE, INFINITE);
+
+       for( idx = 0; idx < cnt; idx++ )
+               CloseHandle(threads[idx]);
+
+#endif
+       elapsed = getCpuTime(0) - start;
+       fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(1);
+       fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(2);
+       fprintf(stderr, " sys  %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+
+       bt_mgrclose (mgr);
+}
+
+#endif //STANDALONE