]> pd.if.org Git - btree/commitdiff
Introduce threadskv series of key-value stores
authorunknown <karl@E04.petzent.com>
Wed, 3 Sep 2014 16:32:50 +0000 (09:32 -0700)
committerunknown <karl@E04.petzent.com>
Wed, 3 Sep 2014 16:32:50 +0000 (09:32 -0700)
README.md
threadskv1.c
threadskv2.c [new file with mode: 0644]
threadskv3.c [new file with mode: 0644]

index aab487ef589a5d19fabc0afbb9c3f157ef663977..4a81c1ae04abdd60f2e2ed94bb8957196335be74 100644 (file)
--- a/README.md
+++ b/README.md
@@ -3,7 +3,7 @@ Btree-source-code
 
 A working project for High-concurrency B-tree source code in C
 
-There are seven files in the btree source code:
+Here are files in the btree source code:
 
 btree2s.c       Single Threaded/MultiProcess version that removes keys all the way back to an original empty btree, placing removed nodes on a free list.  Operates under either memory mapping or file I/O.  Recommended btrees hosted on network file systems.
 
@@ -21,6 +21,10 @@ threads2j.c     Multi-Threaded/Multi-Process with latching implemented by a latc
 
 threadskv1.c   Multi-Threaded/Multi-Process based on threads2i.c that generalizes key/value storage in the btree pages. The page slots are reduced to 16 or 32 bits, and the value byte storage occurs along with the key storage.
 
+threadskv2.c   Multi-Threaded/Multi-Process based on threadskv1 that replaces the linear sorted key array with a red/black tree.
+
+threadskv3.c   Multi-Threaded/Multi-Process based on threadskv1 that introduces librarian filler slots in the linear key array to minimize data movement when a new key is inserted into the middle of the array.
+
 Compilation is achieved on linux or Windows by:
 
 gcc -D STANDALONE threads2h.c -lpthread
index 1bbe7792aab2643b033cb542d62cd866fe331e16..67761e784e7e11bc803af759070d68c1c53a2f00 100644 (file)
@@ -1787,8 +1787,8 @@ int ret;
        else
                return 0;
 
-       // if key exists, return TRUE
-       //      otherwise return FALSE
+       // if key exists, return >= 0 value bytes copied
+       //      otherwise return (-1)
 
        if( !slotptr(set->page, slot)->dead && !keycmp (ptr, key, keylen) ) {
                val = valptr (set->page,slot);
@@ -1859,7 +1859,7 @@ BtVal val;
 
                // set up the slot
 
-               slotptr(page, idx)->off = nxt;
+               slotptr(page, ++idx)->off = nxt;
 
                if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) )
                        page->act++;
@@ -2364,7 +2364,8 @@ BtKey ptr;
 }
 
 typedef struct {
-       char type, idx;
+       char idx;
+       char *type;
        char *infile;
        BtMgr *mgr;
        int num;
@@ -2391,7 +2392,7 @@ FILE *in;
 
        bt = bt_open (args->mgr);
 
-       switch(args->type | 0x20)
+       switch(args->type[0] | 0x20)
        {
        case 'a':
                fprintf(stderr, "started latch mgr audit\n");
@@ -2452,6 +2453,8 @@ FILE *in;
                          else if( args->num )
                                sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
 
+                         if( (args->type[1] | 0x20) == 'p' )
+                               len = 10;
                          if( bt_deletekey (bt, key, len, 0) )
                                fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
                          len = 0;
@@ -2474,6 +2477,8 @@ FILE *in;
                          else if( args->num )
                                sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
 
+                         if( (args->type[1] | 0x20) == 'p' )
+                               len = 10;
                          if( bt_findkey (bt, key, len, NULL, 0) == 0 )
                                found++;
                          else if( bt->err )
@@ -2629,7 +2634,7 @@ BtDb *bt;
 
        for( idx = 0; idx < cnt; idx++ ) {
                args[idx].infile = argv[idx + 7];
-               args[idx].type = argv[2][0];
+               args[idx].type = argv[2];
                args[idx].mgr = mgr;
                args[idx].num = num;
                args[idx].idx = idx;
diff --git a/threadskv2.c b/threadskv2.c
new file mode 100644 (file)
index 0000000..058a023
--- /dev/null
@@ -0,0 +1,3089 @@
+// btree version threadskv2 sched_yield version
+//     with reworked bt_deletekey code
+//     phase-fair reader writer lock
+//     generalized key-value interface
+//
+//     reworked btree node as red/black binomial tree
+// 27 AUG 2014
+
+// author: karl malbrain, malbrain@cal.berkeley.edu
+
+/*
+This work, including the source code, documentation
+and related data, is placed into the public domain.
+
+The orginal author is Karl Malbrain.
+
+THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY
+OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF
+MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE,
+ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE
+RESULTING FROM THE USE, MODIFICATION, OR
+REDISTRIBUTION OF THIS SOFTWARE.
+*/
+
+// Please see the project home page for documentation
+// code.google.com/p/high-concurrency-btree
+
+#define _FILE_OFFSET_BITS 64
+#define _LARGEFILE64_SOURCE
+
+#ifdef linux
+#define _GNU_SOURCE
+#endif
+
+#ifdef unix
+#include <unistd.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <sys/mman.h>
+#include <errno.h>
+#include <pthread.h>
+#else
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <process.h>
+#include <intrin.h>
+#endif
+
+#include <memory.h>
+#include <string.h>
+#include <stddef.h>
+
+typedef unsigned long long     uid;
+
+#ifndef unix
+typedef unsigned long long     off64_t;
+typedef unsigned short         ushort;
+typedef unsigned int           uint;
+#endif
+
+#define BT_latchtable  128                                     // number of latch manager slots
+
+#define BT_ro 0x6f72   // ro
+#define BT_rw 0x7772   // rw
+
+#define BT_maxbits             24                                      // maximum page size in bits
+#define BT_minbits             9                                       // minimum page size in bits
+#define BT_minpage             (1 << BT_minbits)       // minimum page size
+#define BT_maxpage             (1 << BT_maxbits)       // maximum page size
+
+#define BT_binomial            5                                       // number of levels to emit together
+/*
+There are five lock types for each node in three independent sets: 
+1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. 
+2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 
+3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 
+4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. 
+5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. 
+*/
+
+typedef enum{
+       BtLockAccess,
+       BtLockDelete,
+       BtLockRead,
+       BtLockWrite,
+       BtLockParent
+} BtLock;
+
+//     definition for phase-fair reader/writer lock implementation
+
+typedef struct {
+       ushort rin[1];
+       ushort rout[1];
+       ushort ticket[1];
+       ushort serving[1];
+} RWLock;
+
+#define PHID 0x1
+#define PRES 0x2
+#define MASK 0x3
+#define RINC 0x4
+
+//     definition for spin latch implementation
+
+// exclusive is set for write access
+// share is count of read accessors
+// grant write lock when share == 0
+
+volatile typedef struct {
+       ushort exclusive:1;
+       ushort pending:1;
+       ushort share:14;
+} BtSpinLatch;
+
+#define XCL 1
+#define PEND 2
+#define BOTH 3
+#define SHARE 4
+
+//  hash table entries
+
+typedef struct {
+       BtSpinLatch latch[1];
+       volatile ushort slot;           // Latch table entry at head of chain
+} BtHashEntry;
+
+//     latch manager table structure
+
+typedef struct {
+       RWLock readwr[1];               // read/write page lock
+       RWLock access[1];               // Access Intent/Page delete
+       RWLock parent[1];               // Posting of fence key in parent
+       BtSpinLatch busy[1];            // slot is being moved between chains
+       volatile ushort next;           // next entry in hash table chain
+       volatile ushort prev;           // prev entry in hash table chain
+       volatile ushort pin;            // number of outstanding locks
+       volatile ushort hash;           // hash slot entry is under
+       volatile uid page_no;           // latch set page number
+} BtLatchSet;
+
+//     Define the length of the page and key pointers
+
+#define BtId 6
+
+//     Page key slot definition.
+
+//     Keys are marked dead, but remain on the page until
+//     cleanup is called. The fence key (highest key) for
+//     a leaf page is always present, even after cleanup.
+
+typedef struct {
+       uint off:BT_maxbits;    // page offset for key start
+       uint fence:1;                   // is tree node the fence key?
+       uint red:1;                             // is tree node red?
+       uint dead:1;                    // set for deleted key
+       uint left, right;               // next nodes down
+} BtSlot;
+
+//     The key structure occupies space at the upper end of
+//     each page.  It's a length byte followed by the key
+//     bytes.
+
+typedef struct {
+       unsigned char len;
+       unsigned char key[1];
+} *BtKey;
+
+//     the value structure also occupies space at the upper
+//     end of the page.
+
+typedef struct {
+       unsigned char len;
+       unsigned char value[1];
+} *BtVal;
+
+//     The first part of an index page.
+//     It is immediately followed
+//     by the BtSlot array of keys.
+
+typedef struct BtPage_ {
+       uint cnt;                                       // count of keys in page
+       uint act;                                       // count of active keys
+       uint min;                                       // next key offset
+       uint root;                                      // slot of root node
+       unsigned char bits:7;           // page size in bits
+       unsigned char free:1;           // page is on free chain
+       unsigned char lvl:6;            // level of page
+       unsigned char kill:1;           // page is being deleted
+       unsigned char dirty:1;          // page has deleted keys
+       unsigned char right[BtId];      // page number to right
+} *BtPage;
+
+//     The memory mapping pool table buffer manager entry
+
+typedef struct {
+       uid  basepage;                          // mapped base page number
+       char *map;                                      // mapped memory pointer
+       ushort slot;                            // slot index in this array
+       ushort pin;                                     // mapped page pin counter
+       void *hashprev;                         // previous pool entry for the same hash idx
+       void *hashnext;                         // next pool entry for the same hash idx
+#ifndef unix
+       HANDLE hmap;                            // Windows memory mapping handle
+#endif
+} BtPool;
+
+#define CLOCK_bit 0x8000               // bit in pool->pin
+
+//  The loadpage interface object
+
+typedef struct {
+       uid page_no;            // current page number
+       BtPage page;            // current page pointer
+       BtPool *pool;           // current page pool
+       BtLatchSet *latch;      // current page latch set
+} BtPageSet;
+
+//     structure for latch manager on ALLOC_page
+
+typedef struct {
+       struct BtPage_ alloc[1];        // next page_no in right ptr
+       unsigned char chain[BtId];      // head of free page_nos chain
+       BtSpinLatch lock[1];            // allocation area lite latch
+       ushort latchdeployed;           // highest number of latch entries deployed
+       ushort nlatchpage;                      // number of latch pages at BT_latch
+       ushort latchtotal;                      // number of page latch entries
+       ushort latchhash;                       // number of latch hash table slots
+       ushort latchvictim;                     // next latch entry to examine
+       BtHashEntry table[0];           // the hash table
+} BtLatchMgr;
+
+//     The object structure for Btree access
+
+typedef struct {
+       uint page_size;                         // page size    
+       uint page_bits;                         // page size in bits    
+       uint seg_bits;                          // seg size in pages in bits
+       uint mode;                                      // read-write mode
+#ifdef unix
+       int idx;
+#else
+       HANDLE idx;
+#endif
+       ushort poolcnt;                         // highest page pool node in use
+       ushort poolmax;                         // highest page pool node allocated
+       ushort poolmask;                        // total number of pages in mmap segment - 1
+       ushort hashsize;                        // size of Hash Table for pool entries
+       volatile uint evicted;          // last evicted hash table slot
+       ushort *hash;                           // pool index for hash entries
+       BtSpinLatch *latch;                     // latches for hash table slots
+       BtLatchMgr *latchmgr;           // mapped latch page from allocation page
+       BtLatchSet *latchsets;          // mapped latch set from latch pages
+       BtPool *pool;                           // memory pool page segments
+#ifndef unix
+       HANDLE halloc;                          // allocation and latch table handle
+#endif
+} BtMgr;
+
+//     red-black tree descent stack
+
+typedef struct {
+       uint slot:BT_maxbits;
+       int cmp:2;                      // comparison result
+} BtPathEntry;
+
+typedef struct {
+       int lvl;                        // height of the stack
+       int ge;                         // last node that is >= given node
+       BtPathEntry entry[BT_maxbits+2];        // stacked tree descent
+} BtPathStk;
+
+typedef struct {
+       BtMgr *mgr;                     // buffer manager for thread
+       unsigned char *mem;     // frame, cursor, page memory buffer
+       BtPathStk path[1];      // cached frame path stack for begin/next
+       BtPage cursor;          // cached frame for start/next (never mapped)
+       BtPage frame;           // spare frame for the page split (never mapped)
+       uint *que;                      // binomial key distribution buffer
+       int found;                      // last delete or insert was found
+       int base;                       // maximum binomial assignment
+       int err;                        // last error
+} BtDb;
+
+typedef enum {
+       BTERR_ok = 0,
+       BTERR_struct,
+       BTERR_ovflw,
+       BTERR_lock,
+       BTERR_map,
+       BTERR_wrt,
+       BTERR_hash
+} BTERR;
+
+// B-Tree functions
+extern void bt_close (BtDb *bt);
+extern BtDb *bt_open (BtMgr *mgr);
+extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, void *value, uint vallen, uint stopper);
+extern BTERR  bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl, uint stopper);
+extern int bt_findkey    (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint vallen);
+extern uint bt_startkey  (BtDb *bt, unsigned char *key, uint len);
+extern uint bt_nextkey   (BtDb *bt);
+
+//     manager functions
+extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolsize, uint segsize, uint hashsize);
+void bt_mgrclose (BtMgr *mgr);
+
+//     forward definitions
+uint bt_rbremovefence (BtPage page, uint slot, BtPathStk *path);
+
+//  Helper functions to return slot values
+//     from the cursor page.
+
+extern BtKey bt_key (BtDb *bt, uint slot);
+extern BtVal bt_val (BtDb *bt, uint slot);
+
+//  BTree page number constants
+#define ALLOC_page             0       // allocation & latch manager hash table
+#define ROOT_page              1       // root of the btree
+#define LEAF_page              2       // first page of leaves
+#define LATCH_page             3       // pages for latch manager
+
+//     Number of levels to create in a new BTree
+
+#define MIN_lvl                        2
+
+//  The page is allocated from low and hi ends.
+//  The key slots are allocated from the bottom,
+//     and are organized into a balanced binary tree.
+//     The text and value of the key
+//  are allocated from the top.  When the two
+//  areas meet, the page is split into two.
+
+//  A key consists of a length byte, two bytes of
+//  index number (0 - 65534), and up to 253 bytes
+//  of key value.  Duplicate keys are discarded.
+//  Associated with each key is a value byte string
+//     containing any value desired.
+
+//  The b-tree root is always located at page 1.
+//     The first leaf page of level zero is always
+//     located on page 2.
+
+//     The b-tree pages are linked with next
+//     pointers to facilitate enumerators,
+//     and provide for concurrency.
+
+//     When to root page fills, it is split in two and
+//     the tree height is raised by a new root at page
+//     one with two keys.
+
+//     Deleted keys are marked with a dead bit until
+//     page cleanup. The fence key for a leaf node is
+//     always present
+
+//  Groups of pages called segments from the btree are optionally
+//  cached with a memory mapped pool. A hash table is used to keep
+//  track of the cached segments.  This behaviour is controlled
+//  by the cache block size parameter to bt_open.
+
+//  To achieve maximum concurrency one page is locked at a time
+//  as the tree is traversed to find leaf key in question. The right
+//  page numbers are used in cases where the page is being split,
+//     or consolidated.
+
+//  Page 0 is dedicated to lock for new page extensions,
+//     and chains empty pages together for reuse. It also
+//     contains the latch manager hash table.
+
+//     The ParentModification lock on a node is obtained to serialize posting
+//     or changing the fence key for a node.
+
+//     Empty pages are chained together through the ALLOC page and reused.
+
+//     Access macros to address slot and key values from the page
+//     Page slots use 1 based indexing.
+
+#define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1))
+#define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off))
+#define valptr(page, slot) ((BtVal)(keyptr(page,slot)->key + keyptr(page,slot)->len))
+
+void bt_putid(unsigned char *dest, uid id)
+{
+int i = BtId;
+
+       while( i-- )
+               dest[i] = (unsigned char)id, id >>= 8;
+}
+
+uid bt_getid(unsigned char *src)
+{
+uid id = 0;
+int i;
+
+       for( i = 0; i < BtId; i++ )
+               id <<= 8, id |= *src++; 
+
+       return id;
+}
+
+//     Phase-Fair reader/writer lock implementation
+
+void WriteLock (RWLock *lock)
+{
+ushort w, r, tix;
+
+#ifdef unix
+       tix = __sync_fetch_and_add (lock->ticket, 1);
+#else
+       tix = _InterlockedExchangeAdd16 (lock->ticket, 1);
+#endif
+       // wait for our ticket to come up
+
+       while( tix != lock->serving[0] )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread ();
+#endif
+
+       w = PRES | (tix & PHID);
+#ifdef  unix
+       r = __sync_fetch_and_add (lock->rin, w);
+#else
+       r = _InterlockedExchangeAdd16 (lock->rin, w);
+#endif
+       while( r != *lock->rout )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread();
+#endif
+}
+
+void WriteRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_and (lock->rin, ~MASK);
+#else
+       _InterlockedAnd16 (lock->rin, ~MASK);
+#endif
+       lock->serving[0]++;
+}
+
+void ReadLock (RWLock *lock)
+{
+ushort w;
+#ifdef unix
+       w = __sync_fetch_and_add (lock->rin, RINC) & MASK;
+#else
+       w = _InterlockedExchangeAdd16 (lock->rin, RINC) & MASK;
+#endif
+       if( w )
+         while( w == (*lock->rin & MASK) )
+#ifdef unix
+               sched_yield ();
+#else
+               SwitchToThread ();
+#endif
+}
+
+void ReadRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_add (lock->rout, RINC);
+#else
+       _InterlockedExchangeAdd16 (lock->rout, RINC);
+#endif
+}
+
+//     Spin Latch Manager
+
+//     wait until write lock mode is clear
+//     and add 1 to the share count
+
+void bt_spinreadlock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, SHARE);
+#endif
+       //  see if exclusive request is granted or pending
+
+       if( !(prev & BOTH) )
+               return;
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, -SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     wait for other read and write latches to relinquish
+
+void bt_spinwritelock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, PEND | XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, PEND | XCL);
+#endif
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     try to obtain write lock
+
+//     return 1 if obtained,
+//             0 otherwise
+
+int bt_spinwritetry(BtSpinLatch *latch)
+{
+ushort prev;
+
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, XCL);
+#endif
+       //      take write access if all bits are clear
+
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return 1;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+       return 0;
+}
+
+//     clear write mode
+
+void bt_spinreleasewrite(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_and((ushort *)latch, ~BOTH);
+#else
+       _InterlockedAnd16((ushort *)latch, ~BOTH);
+#endif
+}
+
+//     decrement reader count
+
+void bt_spinreleaseread(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_add((ushort *)latch, -SHARE);
+#else
+       _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+}
+
+//     link latch table entry into latch hash table
+
+void bt_latchlink (BtDb *bt, ushort hashidx, ushort victim, uid page_no)
+{
+BtLatchSet *set = bt->mgr->latchsets + victim;
+
+       if( set->next = bt->mgr->latchmgr->table[hashidx].slot )
+               bt->mgr->latchsets[set->next].prev = victim;
+
+       bt->mgr->latchmgr->table[hashidx].slot = victim;
+       set->page_no = page_no;
+       set->hash = hashidx;
+       set->prev = 0;
+}
+
+//     release latch pin
+
+void bt_unpinlatch (BtLatchSet *set)
+{
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, -1);
+#else
+       _InterlockedDecrement16 (&set->pin);
+#endif
+}
+
+//     find existing latchset or inspire new one
+//     return with latchset pinned
+
+BtLatchSet *bt_pinlatch (BtDb *bt, uid page_no)
+{
+ushort hashidx = page_no % bt->mgr->latchmgr->latchhash;
+ushort slot, avail = 0, victim, idx;
+BtLatchSet *set;
+
+       //  obtain read lock on hash table entry
+
+       bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+       {
+               set = bt->mgr->latchsets + slot;
+               if( page_no == set->page_no )
+                       break;
+       } while( slot = set->next );
+
+       if( slot ) {
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+       }
+
+    bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot )
+               return set;
+
+  //  try again, this time with write lock
+
+  bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch);
+
+  if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+  {
+       set = bt->mgr->latchsets + slot;
+       if( page_no == set->page_no )
+               break;
+       if( !set->pin && !avail )
+               avail = slot;
+  } while( slot = set->next );
+
+  //  found our entry, or take over an unpinned one
+
+  if( slot || (slot = avail) ) {
+       set = bt->mgr->latchsets + slot;
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       set->page_no = page_no;
+       bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch);
+       return set;
+  }
+
+       //  see if there are any unused entries
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, 1) + 1;
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+
+       if( victim < bt->mgr->latchmgr->latchtotal ) {
+               set = bt->mgr->latchsets + victim;
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+               bt_latchlink (bt, hashidx, victim, page_no);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+               return set;
+       }
+
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, -1);
+#else
+       victim = _InterlockedDecrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+  //  find and reuse previous lock entry
+
+  while( 1 ) {
+#ifdef unix
+       victim = __sync_fetch_and_add(&bt->mgr->latchmgr->latchvictim, 1);
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchvictim) - 1;
+#endif
+       //      we don't use slot zero
+
+       if( victim %= bt->mgr->latchmgr->latchtotal )
+               set = bt->mgr->latchsets + victim;
+       else
+               continue;
+
+       //      take control of our slot
+       //      from other threads
+
+       if( set->pin || !bt_spinwritetry (set->busy) )
+               continue;
+
+       idx = set->hash;
+
+       // try to get write lock on hash chain
+       //      skip entry if not obtained
+       //      or has outstanding locks
+
+       if( !bt_spinwritetry (bt->mgr->latchmgr->table[idx].latch) ) {
+               bt_spinreleasewrite (set->busy);
+               continue;
+       }
+
+       if( set->pin ) {
+               bt_spinreleasewrite (set->busy);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+               continue;
+       }
+
+       //  unlink our available victim from its hash chain
+
+       if( set->prev )
+               bt->mgr->latchsets[set->prev].next = set->next;
+       else
+               bt->mgr->latchmgr->table[idx].slot = set->next;
+
+       if( set->next )
+               bt->mgr->latchsets[set->next].prev = set->prev;
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       bt_latchlink (bt, hashidx, victim, page_no);
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+       bt_spinreleasewrite (set->busy);
+       return set;
+  }
+}
+
+void bt_mgrclose (BtMgr *mgr)
+{
+BtPool *pool;
+uint slot;
+
+       // release mapped pages
+       //      note that slot zero is never used
+
+       for( slot = 1; slot < mgr->poolmax; slot++ ) {
+               pool = mgr->pool + slot;
+               if( pool->slot )
+#ifdef unix
+                       munmap (pool->map, (uid)(mgr->poolmask+1) << mgr->page_bits);
+#else
+               {
+                       FlushViewOfFile(pool->map, 0);
+                       UnmapViewOfFile(pool->map);
+                       CloseHandle(pool->hmap);
+               }
+#endif
+       }
+
+#ifdef unix
+       munmap (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+       munmap (mgr->latchmgr, 2 * mgr->page_size);
+#else
+       FlushViewOfFile(mgr->latchmgr, 0);
+       UnmapViewOfFile(mgr->latchmgr);
+       CloseHandle(mgr->halloc);
+#endif
+#ifdef unix
+       close (mgr->idx);
+       free (mgr->pool);
+       free (mgr->hash);
+       free ((void *)mgr->latch);
+       free (mgr);
+#else
+       FlushFileBuffers(mgr->idx);
+       CloseHandle(mgr->idx);
+       GlobalFree (mgr->pool);
+       GlobalFree (mgr->hash);
+       GlobalFree ((void *)mgr->latch);
+       GlobalFree (mgr);
+#endif
+}
+
+//     close and release memory
+
+void bt_close (BtDb *bt)
+{
+#ifdef unix
+       if( bt->mem )
+               free (bt->mem);
+#else
+       if( bt->mem)
+               VirtualFree (bt->mem, 0, MEM_RELEASE);
+#endif
+       free (bt);
+}
+
+//  open/create new btree buffer manager
+
+//     call with file_name, BT_openmode, bits in page size (e.g. 16),
+//             size of mapped page pool (e.g. 8192)
+
+BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolmax, uint segsize, uint hashsize)
+{
+uint lvl, attr, cacheblk, last, slot, idx;
+uint nlatchpage, latchhash;
+unsigned char value[BtId];
+BtLatchMgr *latchmgr;
+off64_t size;
+uint amt[1];
+BtMgr* mgr;
+BtKey key;
+BtVal val;
+int flag;
+
+#ifndef unix
+SYSTEM_INFO sysinfo[1];
+#endif
+
+       // determine sanity of page size and buffer pool
+
+       if( bits > BT_maxbits )
+               bits = BT_maxbits;
+       else if( bits < BT_minbits )
+               bits = BT_minbits;
+
+       if( !poolmax )
+               return NULL;    // must have buffer pool
+
+#ifdef unix
+       mgr = calloc (1, sizeof(BtMgr));
+
+       mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666);
+
+       if( mgr->idx == -1 )
+               return free(mgr), NULL;
+       
+       cacheblk = 4096;        // minimum mmap segment size for unix
+
+#else
+       mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr));
+       attr = FILE_ATTRIBUTE_NORMAL;
+       mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL);
+
+       if( mgr->idx == INVALID_HANDLE_VALUE )
+               return GlobalFree(mgr), NULL;
+
+       // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity
+       GetSystemInfo(sysinfo);
+       cacheblk = sysinfo->dwAllocationGranularity;
+#endif
+
+#ifdef unix
+       latchmgr = malloc (BT_maxpage);
+       *amt = 0;
+
+       // read minimum page size to get root info
+
+       if( size = lseek (mgr->idx, 0L, 2) ) {
+               if( pread(mgr->idx, latchmgr, BT_minpage, 0) == BT_minpage )
+                       bits = latchmgr->alloc->bits;
+               else
+                       return free(mgr), free(latchmgr), NULL;
+       } else if( mode == BT_ro )
+               return free(latchmgr), bt_mgrclose (mgr), NULL;
+#else
+       latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE);
+       size = GetFileSize(mgr->idx, amt);
+
+       if( size || *amt ) {
+               if( !ReadFile(mgr->idx, (char *)latchmgr, BT_minpage, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               bits = latchmgr->alloc->bits;
+       } else if( mode == BT_ro )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       mgr->page_size = 1 << bits;
+       mgr->page_bits = bits;
+
+       mgr->poolmax = poolmax;
+       mgr->mode = mode;
+
+       if( cacheblk < mgr->page_size )
+               cacheblk = mgr->page_size;
+
+       //  mask for partial memmaps
+
+       mgr->poolmask = (cacheblk >> bits) - 1;
+
+       //      see if requested size of pages per memmap is greater
+
+       if( (1 << segsize) > mgr->poolmask )
+               mgr->poolmask = (1 << segsize) - 1;
+
+       mgr->seg_bits = 0;
+
+       while( (1 << mgr->seg_bits) <= mgr->poolmask )
+               mgr->seg_bits++;
+
+       mgr->hashsize = hashsize;
+
+#ifdef unix
+       mgr->pool = calloc (poolmax, sizeof(BtPool));
+       mgr->hash = calloc (hashsize, sizeof(ushort));
+       mgr->latch = calloc (hashsize, sizeof(BtSpinLatch));
+#else
+       mgr->pool = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, poolmax * sizeof(BtPool));
+       mgr->hash = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort));
+       mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtSpinLatch));
+#endif
+
+       if( size || *amt )
+               goto mgrlatch;
+
+       // initialize an empty b-tree with latch page, root page, page of leaves
+       // and page(s) of latches
+
+       memset (latchmgr, 0, 1 << bits);
+       nlatchpage = BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1; 
+       bt_putid(latchmgr->alloc->right, MIN_lvl+1+nlatchpage);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       latchmgr->nlatchpage = nlatchpage;
+       latchmgr->latchtotal = nlatchpage * (mgr->page_size / sizeof(BtLatchSet));
+
+       //  initialize latch manager
+
+       latchhash = (mgr->page_size - sizeof(BtLatchMgr)) / sizeof(BtHashEntry);
+
+       //      size of hash table = total number of latchsets
+
+       if( latchhash > latchmgr->latchtotal )
+               latchhash = latchmgr->latchtotal;
+
+       latchmgr->latchhash = latchhash;
+
+#ifdef unix
+       if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#else
+       if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+               return bt_mgrclose (mgr), NULL;
+
+       if( *amt < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       memset (latchmgr, 0, 1 << bits);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       for( lvl=MIN_lvl; lvl--; ) {
+               slotptr(latchmgr->alloc, 1)->off = mgr->page_size - 3 - (lvl ? BtId + 1: 1);
+               slotptr(latchmgr->alloc, 1)->fence = 1;
+               if( !lvl )
+                       slotptr(latchmgr->alloc, 1)->dead = 1;
+               key = keyptr(latchmgr->alloc, 1);
+               key->len = 2;           // create stopper key
+               key->key[0] = 0xff;
+               key->key[1] = 0xff;
+
+               bt_putid(value, MIN_lvl - lvl + 1);
+               val = valptr(latchmgr->alloc, 1);
+               val->len = lvl ? BtId : 0;
+               memcpy (val->value, value, val->len);
+
+               latchmgr->alloc->min = slotptr(latchmgr->alloc, 1)->off;
+               latchmgr->alloc->root = 1;
+               latchmgr->alloc->lvl = lvl;
+               latchmgr->alloc->cnt = 1;
+               latchmgr->alloc->act = 1;
+#ifdef unix
+               if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#else
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+       }
+
+       // clear out latch manager locks
+       //      and rest of pages to round out segment
+
+       memset(latchmgr, 0, mgr->page_size);
+       last = MIN_lvl + 1;
+
+       while( last <= ((MIN_lvl + 1 + nlatchpage) | mgr->poolmask) ) {
+#ifdef unix
+               pwrite(mgr->idx, latchmgr, mgr->page_size, last << mgr->page_bits);
+#else
+               SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN);
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+               last++;
+       }
+
+mgrlatch:
+#ifdef unix
+       // mlock the root page and the latchmgr page
+
+       flag = PROT_READ | PROT_WRITE;
+       mgr->latchmgr = mmap (0, 2 * mgr->page_size, flag, MAP_SHARED, mgr->idx, ALLOC_page * mgr->page_size);
+       if( mgr->latchmgr == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchmgr, 2 * mgr->page_size);
+
+       mgr->latchsets = (BtLatchSet *)mmap (0, mgr->latchmgr->nlatchpage * mgr->page_size, flag, MAP_SHARED, mgr->idx, LATCH_page * mgr->page_size);
+       if( mgr->latchsets == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+#else
+       flag = PAGE_READWRITE;
+       mgr->halloc = CreateFileMapping(mgr->idx, NULL, flag, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size, NULL);
+       if( !mgr->halloc )
+               return bt_mgrclose (mgr), NULL;
+
+       flag = FILE_MAP_WRITE;
+       mgr->latchmgr = MapViewOfFile(mgr->halloc, flag, 0, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size);
+       if( !mgr->latchmgr )
+               return GetLastError(), bt_mgrclose (mgr), NULL;
+
+       mgr->latchsets = (void *)((char *)mgr->latchmgr + LATCH_page * mgr->page_size);
+#endif
+
+#ifdef unix
+       free (latchmgr);
+#else
+       VirtualFree (latchmgr, 0, MEM_RELEASE);
+#endif
+       return mgr;
+}
+
+//     open BTree access method
+//     based on buffer manager
+
+BtDb *bt_open (BtMgr *mgr)
+{
+BtDb *bt = malloc (sizeof(*bt));
+
+       memset (bt, 0, sizeof(*bt));
+       bt->mgr = mgr;
+#ifdef unix
+       bt->mem = malloc (3 *mgr->page_size);
+#else
+       bt->mem = VirtualAlloc(NULL, 3 * mgr->page_size, MEM_COMMIT, PAGE_READWRITE);
+#endif
+       bt->frame = (BtPage)bt->mem;
+       bt->cursor = (BtPage)(bt->mem + 1 * mgr->page_size);
+       bt->que = (uint *)(bt->mem + 2 * mgr->page_size);
+       return bt;
+}
+
+//  compare two keys, returning > 0, = 0, or < 0
+//  as the comparison value
+//     -1 -> go right
+//     1 -> go left
+
+int keycmp (BtKey key1, unsigned char *key2, uint len2)
+{
+uint len1 = key1->len;
+int ans;
+
+       if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) )
+               return ans > 0 ? 1 : -1;
+
+       if( len1 > len2 )
+               return 1;
+       if( len1 < len2 )
+               return -1;
+
+       return 0;
+}
+
+//     Buffer Pool mgr
+
+// find segment in pool
+// must be called with hashslot idx locked
+//     return NULL if not there
+//     otherwise return node
+
+BtPool *bt_findpool(BtDb *bt, uid page_no, uint idx)
+{
+BtPool *pool;
+uint slot;
+
+       // compute start of hash chain in pool
+
+       if( slot = bt->mgr->hash[idx] ) 
+               pool = bt->mgr->pool + slot;
+       else
+               return NULL;
+
+       page_no &= ~bt->mgr->poolmask;
+
+       while( pool->basepage != page_no )
+         if( pool = pool->hashnext )
+               continue;
+         else
+               return NULL;
+
+       return pool;
+}
+
+// add segment to hash table
+
+void bt_linkhash(BtDb *bt, BtPool *pool, uid page_no, int idx)
+{
+BtPool *node;
+uint slot;
+
+       pool->hashprev = pool->hashnext = NULL;
+       pool->basepage = page_no & ~bt->mgr->poolmask;
+       pool->pin = CLOCK_bit + 1;
+
+       if( slot = bt->mgr->hash[idx] ) {
+               node = bt->mgr->pool + slot;
+               pool->hashnext = node;
+               node->hashprev = pool;
+       }
+
+       bt->mgr->hash[idx] = pool->slot;
+}
+
+//  map new buffer pool segment to virtual memory
+
+BTERR bt_mapsegment(BtDb *bt, BtPool *pool, uid page_no)
+{
+off64_t off = (page_no & ~bt->mgr->poolmask) << bt->mgr->page_bits;
+off64_t limit = off + ((bt->mgr->poolmask+1) << bt->mgr->page_bits);
+int flag;
+
+#ifdef unix
+       flag = PROT_READ | ( bt->mgr->mode == BT_ro ? 0 : PROT_WRITE );
+       pool->map = mmap (0, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off);
+       if( pool->map == MAP_FAILED )
+               return bt->err = BTERR_map;
+
+#else
+       flag = ( bt->mgr->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE );
+       pool->hmap = CreateFileMapping(bt->mgr->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL);
+       if( !pool->hmap )
+               return bt->err = BTERR_map;
+
+       flag = ( bt->mgr->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE );
+       pool->map = MapViewOfFile(pool->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (bt->mgr->poolmask+1) << bt->mgr->page_bits);
+       if( !pool->map )
+               return bt->err = BTERR_map;
+#endif
+       return bt->err = 0;
+}
+
+//     calculate page within pool
+
+BtPage bt_page (BtDb *bt, BtPool *pool, uid page_no)
+{
+uint subpage = (uint)(page_no & bt->mgr->poolmask); // page within mapping
+BtPage page;
+
+       page = (BtPage)(pool->map + (subpage << bt->mgr->page_bits));
+//     madvise (page, bt->mgr->page_size, MADV_WILLNEED);
+       return page;
+}
+
+//  release pool pin
+
+void bt_unpinpool (BtPool *pool)
+{
+#ifdef unix
+       __sync_fetch_and_add(&pool->pin, -1);
+#else
+       _InterlockedDecrement16 (&pool->pin);
+#endif
+}
+
+//     find or place requested page in segment-pool
+//     return pool table entry, incrementing pin
+
+BtPool *bt_pinpool(BtDb *bt, uid page_no)
+{
+uint slot, hashidx, idx, victim;
+BtPool *pool, *node, *next;
+
+       //      lock hash table chain
+
+       hashidx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+       bt_spinwritelock (&bt->mgr->latch[hashidx]);
+
+       //      look up in hash table
+
+       if( pool = bt_findpool(bt, page_no, hashidx) ) {
+#ifdef unix
+               __sync_fetch_and_or(&pool->pin, CLOCK_bit);
+               __sync_fetch_and_add(&pool->pin, 1);
+#else
+               _InterlockedOr16 (&pool->pin, CLOCK_bit);
+               _InterlockedIncrement16 (&pool->pin);
+#endif
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // allocate a new pool node
+       // and add to hash table
+
+#ifdef unix
+       slot = __sync_fetch_and_add(&bt->mgr->poolcnt, 1);
+#else
+       slot = _InterlockedIncrement16 (&bt->mgr->poolcnt) - 1;
+#endif
+
+       if( ++slot < bt->mgr->poolmax ) {
+               pool = bt->mgr->pool + slot;
+               pool->slot = slot;
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // pool table is full
+       //      find best pool entry to evict
+
+#ifdef unix
+       __sync_fetch_and_add(&bt->mgr->poolcnt, -1);
+#else
+       _InterlockedDecrement16 (&bt->mgr->poolcnt);
+#endif
+
+       while( 1 ) {
+#ifdef unix
+               victim = __sync_fetch_and_add(&bt->mgr->evicted, 1);
+#else
+               victim = _InterlockedIncrement (&bt->mgr->evicted) - 1;
+#endif
+               victim %= bt->mgr->poolmax;
+               pool = bt->mgr->pool + victim;
+               idx = (uint)(pool->basepage >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+
+               if( !victim )
+                       continue;
+
+               // try to get write lock
+               //      skip entry if not obtained
+
+               if( !bt_spinwritetry (&bt->mgr->latch[idx]) )
+                       continue;
+
+               //      skip this entry if
+               //      page is pinned
+               //  or clock bit is set
+
+               if( pool->pin ) {
+#ifdef unix
+                       __sync_fetch_and_and(&pool->pin, ~CLOCK_bit);
+#else
+                       _InterlockedAnd16 (&pool->pin, ~CLOCK_bit);
+#endif
+                       bt_spinreleasewrite (&bt->mgr->latch[idx]);
+                       continue;
+               }
+
+               // unlink victim pool node from hash table
+
+               if( node = pool->hashprev )
+                       node->hashnext = pool->hashnext;
+               else if( node = pool->hashnext )
+                       bt->mgr->hash[idx] = node->slot;
+               else
+                       bt->mgr->hash[idx] = 0;
+
+               if( node = pool->hashnext )
+                       node->hashprev = pool->hashprev;
+
+               bt_spinreleasewrite (&bt->mgr->latch[idx]);
+
+               //      remove old file mapping
+#ifdef unix
+               munmap (pool->map, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits);
+#else
+//             FlushViewOfFile(pool->map, 0);
+               UnmapViewOfFile(pool->map);
+               CloseHandle(pool->hmap);
+#endif
+               pool->map = NULL;
+
+               //  create new pool mapping
+               //  and link into hash table
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+}
+
+// place write, read, or parent lock on requested page_no.
+
+void bt_lockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadLock (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteLock (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadLock (set->access);
+               break;
+       case BtLockDelete:
+               WriteLock (set->access);
+               break;
+       case BtLockParent:
+               WriteLock (set->parent);
+               break;
+       }
+}
+
+// remove write, read, or parent lock on requested page
+
+void bt_unlockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadRelease (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteRelease (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadRelease (set->access);
+               break;
+       case BtLockDelete:
+               WriteRelease (set->access);
+               break;
+       case BtLockParent:
+               WriteRelease (set->parent);
+               break;
+       }
+}
+
+//     allocate a new page and write page into it
+
+uid bt_newpage(BtDb *bt, BtPage page)
+{
+BtPageSet set[1];
+uid new_page;
+int blk;
+
+       //      lock allocation page
+
+       bt_spinwritelock(bt->mgr->latchmgr->lock);
+
+       // use empty chain first
+       // else allocate empty page
+
+       if( new_page = bt_getid(bt->mgr->latchmgr->chain) ) {
+               if( set->pool = bt_pinpool (bt, new_page) )
+                       set->page = bt_page (bt, set->pool, new_page);
+               else
+                       return 0;
+
+               bt_putid(bt->mgr->latchmgr->chain, bt_getid(set->page->right));
+               bt_unpinpool (set->pool);
+       } else {
+               new_page = bt_getid(bt->mgr->latchmgr->alloc->right);
+               bt_putid(bt->mgr->latchmgr->alloc->right, new_page+1);
+#ifdef unix
+               // if writing first page of pool block, set file length thru last page
+
+               if( (new_page & bt->mgr->poolmask) == 0 )
+                       ftruncate (bt->mgr->idx, (new_page + bt->mgr->poolmask + 1) << bt->mgr->page_bits);
+#endif
+       }
+#ifdef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+
+       //      bring new page into pool and copy page.
+       //      this will extend the file into the new pages on WIN32.
+
+       if( set->pool = bt_pinpool (bt, new_page) )
+               set->page = bt_page (bt, set->pool, new_page);
+       else
+               return 0;
+
+       memcpy(set->page, page, bt->mgr->page_size);
+       bt_unpinpool (set->pool);
+
+#ifndef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+       return new_page;
+}
+
+//  find slot in page for given key at a given level
+
+uint bt_findslot (BtPage page, BtPage src, unsigned char *key, uint len, BtPathStk *path, uint stopper)
+{
+BtSlot *node;
+uint slot;
+
+  path->lvl = -1;
+  path->ge = -1;
+
+  if( slot = page->root ) do {
+       path->entry[++path->lvl].slot = slot;
+       node = slotptr(page,slot);
+
+       if( node->fence && !bt_getid(page->right) && stopper )
+         path->entry[path->lvl].cmp = 0;
+       else if( node->fence && !bt_getid(page->right) )
+         path->entry[path->lvl].cmp = 1;
+       else if( stopper )
+         path->entry[path->lvl].cmp = -1;
+       else
+         path->entry[path->lvl].cmp = keycmp (keyptr(src, slot), key, len);
+
+       if( path->entry[path->lvl].cmp == 0 )
+               return path->ge = path->lvl, slot;
+
+       if( path->entry[path->lvl].cmp > 0 )
+               path->ge = path->lvl, slot = node->left;
+       else
+               slot = node->right;
+  } while( slot && path->lvl < BT_maxbits );
+  else
+       return 0;
+
+  return path->entry[path->lvl].slot;
+}
+
+// return next slot on the page using the path stack
+
+uint bt_nextslot (BtPage page, BtPathStk *path)
+{
+uint slot, next;
+BtSlot *node;
+
+       slot = path->entry[path->lvl].slot;
+       node = slotptr(page,slot);
+
+       if( slot = node->right ) {
+         path->entry[path->lvl++].cmp = -1;
+         path->entry[path->lvl].slot = slot;
+
+         while( slot = slotptr(page,slot)->left ) {
+               path->entry[path->lvl++].cmp = 1;
+               path->entry[path->lvl].slot = slot;
+         }
+
+         return path->entry[path->lvl].slot;
+       }
+
+       while( path->lvl )
+         if( path->entry[--path->lvl].cmp > 0 )
+               return path->entry[path->lvl].slot;
+
+       return 0;
+}
+
+//  find and load page at given level for given key
+//     leave page rd or wr locked as requested
+
+int bt_loadpage (BtDb *bt, BtPageSet *set, unsigned char *key, uint len, uint lvl, BtLock lock, BtPathStk *path, uint stopper)
+{
+uid page_no = ROOT_page, prevpage = 0;
+uint drill = 0xff, slot;
+BtLatchSet *prevlatch;
+uint mode, prevmode;
+BtPool *prevpool;
+
+  //  start at root of btree and drill down
+
+  do {
+       // determine lock mode of drill level
+       mode = (drill == lvl) ? lock : BtLockRead; 
+
+       set->latch = bt_pinlatch (bt, page_no);
+       set->page_no = page_no;
+
+       // pin page contents
+
+       if( set->pool = bt_pinpool (bt, page_no) )
+               set->page = bt_page (bt, set->pool, page_no);
+       else
+               return 0;
+
+       // obtain access lock using lock chaining with Access mode
+
+       if( page_no > ROOT_page )
+         bt_lockpage(BtLockAccess, set->latch);
+
+       //      release & unpin parent page
+
+       if( prevpage ) {
+         bt_unlockpage(prevmode, prevlatch);
+         bt_unpinlatch (prevlatch);
+         bt_unpinpool (prevpool);
+         prevpage = 0;
+       }
+
+       // obtain read lock using lock chaining
+
+       bt_lockpage(mode, set->latch);
+
+       if( set->page->free )
+               return bt->err = BTERR_struct, 0;
+
+       if( page_no > ROOT_page )
+         bt_unlockpage(BtLockAccess, set->latch);
+
+       // re-read and re-lock root after determining actual level of root
+
+       if( set->page->lvl != drill) {
+               if( set->page_no != ROOT_page )
+                       return bt->err = BTERR_struct, 0;
+                       
+               drill = set->page->lvl;
+
+               if( lock != BtLockRead && drill == lvl ) {
+                 bt_unlockpage(mode, set->latch);
+                 bt_unpinlatch (set->latch);
+                 bt_unpinpool (set->pool);
+                 continue;
+               }
+       }
+
+       prevpage = set->page_no;
+       prevlatch = set->latch;
+       prevpool = set->pool;
+       prevmode = mode;
+
+       //  find key on page at this level
+       //  and descend to requested level
+
+       if( set->page->kill )
+         goto slideright;
+
+       slot = bt_findslot (set->page, set->page, key, len, path, stopper);
+
+       if( path->ge < 0 )
+         goto slideright;
+
+       if( drill == lvl )
+         return slot;
+
+       slot = path->entry[path->ge].slot;
+       path->lvl = path->ge;
+
+       while( slotptr(set->page, slot)->dead )
+         if( slot = bt_nextslot (set->page, path) )
+               continue;
+         else
+               goto slideright;
+
+       page_no = bt_getid(valptr(set->page, slot)->value);
+       drill--;
+       continue;
+
+       //  or slide right into next page
+
+slideright:
+       page_no = bt_getid(set->page->right);
+
+  } while( page_no );
+
+  // return error on end of right chain
+
+  bt->err = BTERR_struct;
+  return 0;    // return error
+}
+
+//     return page to free list
+//     page must be delete & write locked
+
+void bt_freepage (BtDb *bt, BtPageSet *set)
+{
+       //      lock allocation page
+
+       bt_spinwritelock (bt->mgr->latchmgr->lock);
+
+       //      store chain
+       memcpy(set->page->right, bt->mgr->latchmgr->chain, BtId);
+       bt_putid(bt->mgr->latchmgr->chain, set->page_no);
+       set->page->free = 1;
+
+       // unlock released page
+
+       bt_unlockpage (BtLockDelete, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       // unlock allocation page
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->lock);
+}
+
+//     a fence key was deleted from a page
+//     push new fence value upwards in the btree
+
+BTERR bt_fixfence (BtDb *bt, BtPageSet *set, uint lvl)
+{
+unsigned char leftkey[256], rightkey[256];
+unsigned char value[BtId];
+BtPathStk path[1];
+uint slot, fence;
+uid page_no;
+BtKey ptr;
+
+       //      remove the old fence value
+
+       fence = set->page->root;
+       slot = set->page->root;
+       path->lvl = -1;
+
+       do path->entry[++path->lvl].slot = fence = slot;
+       while( slot = slotptr(set->page,slot)->right );
+
+       ptr = keyptr(set->page, fence);
+       memcpy (rightkey, ptr, ptr->len + 1);
+
+       do fence = bt_rbremovefence (set->page, fence, path);
+       while( slotptr(set->page,fence)->dead );
+
+       set->page->dirty = 1;
+
+       ptr = keyptr(set->page, fence);
+       memcpy (leftkey, ptr, ptr->len + 1);
+       page_no = set->page_no;
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       //      insert new (now smaller) fence key
+
+       bt_putid (value, page_no);
+
+       if( bt_insertkey (bt, leftkey+1, *leftkey, lvl+1, value, BtId, 0) )
+         return bt->err;
+
+       //      now delete old fence key
+
+       if( bt_deletekey (bt, rightkey+1, *rightkey, lvl+1, !bt_getid (set->page->right)) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch(set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+//     root has a single child
+//     collapse a level from the tree
+
+BTERR bt_collapseroot (BtDb *bt, BtPageSet *root)
+{
+BtPageSet child[1];
+uint slot;
+
+  // find the child entry and promote as new root contents
+
+  do {
+       slot = root->page->root;
+       child->page_no = bt_getid (valptr(root->page, slot)->value);
+
+       child->latch = bt_pinlatch (bt, child->page_no);
+       bt_lockpage (BtLockDelete, child->latch);
+       bt_lockpage (BtLockWrite, child->latch);
+
+       if( child->pool = bt_pinpool (bt, child->page_no) )
+               child->page = bt_page (bt, child->pool, child->page_no);
+       else
+               return bt->err;
+
+       memcpy (root->page, child->page, bt->mgr->page_size);
+       bt_freepage (bt, child);
+
+  } while( root->page->lvl > 1 && root->page->act == 1 );
+
+  bt_unlockpage (BtLockWrite, root->latch);
+  bt_unpinlatch (root->latch);
+  bt_unpinpool (root->pool);
+  return 0;
+}
+
+//  find and delete key on page by marking delete flag bit
+//  if page becomes empty, delete it from the btree
+
+BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl, uint stopper)
+{
+unsigned char lowerfence[256], higherfence[256];
+uint slot, idx, dirty = 0, fence, found;
+BtPageSet set[1], right[1];
+unsigned char value[BtId];
+BtPathStk path[1];
+BtSlot *node;
+BtKey ptr;
+BtVal val;
+
+       if( slot = bt_loadpage (bt, set, key, len, lvl, BtLockWrite, path, stopper) )
+               node = slotptr(set->page, slot);
+       else
+               return bt->err;
+
+       // if key is found delete it, otherwise ignore request
+
+       if( found = !path->entry[path->lvl].cmp )
+         if( found = node->dead == 0 ) {
+               dirty = node->dead = 1;
+               set->page->dirty = 1;
+               set->page->act--;
+         }
+
+       //      did we delete a fence key in an upper level?
+
+       if( lvl && node->fence )
+        if( dirty && set->page->act )
+         if( bt_fixfence (bt, set, lvl) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      is this a collapsed root?
+
+       if( lvl > 1 && set->page_no == ROOT_page && set->page->act == 1 )
+         if( bt_collapseroot (bt, set) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      return if page is not empty
+
+       if( set->page->act ) {
+               bt_unlockpage(BtLockWrite, set->latch);
+               bt_unpinlatch (set->latch);
+               bt_unpinpool (set->pool);
+               return bt->found = found, 0;
+       }
+
+       //      cache copy of fence key
+       //      to post in parent
+
+       fence = set->page->root;
+       slot = set->page->root;
+
+       while( slot = slotptr(set->page,slot)->right )
+               fence = slot;
+
+       ptr = keyptr(set->page, fence);
+       memcpy (lowerfence, ptr, ptr->len + 1);
+
+       //      obtain lock on right page
+
+       right->page_no = bt_getid(set->page->right);
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockWrite, right->latch);
+
+       // pin page contents
+
+       if( right->pool = bt_pinpool (bt, right->page_no) )
+               right->page = bt_page (bt, right->pool, right->page_no);
+       else
+               return 0;
+
+       if( right->page->kill )
+               return bt->err = BTERR_struct;
+
+       // pull contents of right peer into our empty page
+
+       memcpy (set->page, right->page, bt->mgr->page_size);
+
+       // cache copy of key to update
+
+       fence = set->page->root;
+       slot = set->page->root;
+
+       while( slot = slotptr(set->page,slot)->right )
+               fence = slot;
+
+       ptr = keyptr(right->page, fence);
+       memcpy (higherfence, ptr, ptr->len + 1);
+
+       // mark right page deleted and point it to left page
+       //      until we can post parent updates
+
+       bt_putid (right->page->right, set->page_no);
+       right->page->kill = 1;
+
+       bt_lockpage (BtLockParent, right->latch);
+       bt_unlockpage (BtLockWrite, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // redirect higher key directly to our new node contents
+
+       stopper = !bt_getid (set->page->right);
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, higherfence+1, *higherfence, lvl+1, value, BtId, stopper) )
+         return bt->err;
+
+       //      delete old lower key to our node
+
+       if( bt_deletekey (bt, lowerfence+1, *lowerfence, lvl+1, 0) )
+         return bt->err;
+
+       //      obtain delete and write locks to right node
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_lockpage (BtLockDelete, right->latch);
+       bt_lockpage (BtLockWrite, right->latch);
+       bt_freepage (bt, right);
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       bt->found = found;
+       return 0;
+}
+
+//     find key in leaf level and return number of value bytes
+//     or (-1) if not found
+
+int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax)
+{
+BtPageSet set[1];
+BtPathStk path[1];
+uint  slot;
+BtKey ptr;
+BtVal val;
+int ret;
+
+       if( !(slot = bt_loadpage (bt, set, key, keylen, 0, BtLockRead, path, 0)) )
+               return -1;
+
+       // if key exists, return TRUE
+       //      otherwise return FALSE
+
+       if( !slotptr(set->page, slot)->dead && !path->entry[path->lvl].cmp ) {
+               val = valptr (set->page,slot);
+               if( valmax > val->len )
+                       valmax = val->len;
+               memcpy (value, val->value, valmax);
+               ret = valmax;
+       } else
+               ret = -1;
+
+       bt_unlockpage (BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return ret;
+}
+
+//     left rotate parent node
+
+void bt_leftrotate (BtPage page, uint slot, BtSlot *parent, int cmp)
+{
+BtSlot *x = slotptr(page,slot);
+uint right = x->right;
+BtSlot *y = slotptr(page,right);
+
+       x->right = y->left;
+
+       if( !parent ) //        is x the root node?
+               page->root = right;
+       else if( cmp == 1 )
+               parent->left = right;
+       else
+               parent->right = right;
+
+       y->left = slot;
+}
+
+//     right rotate parent node
+
+void bt_rightrotate (BtPage page, uint slot, BtSlot *parent, int cmp)
+{
+BtSlot *x = slotptr(page,slot);
+uint left = x->left;
+BtSlot *y = slotptr(page,left);
+
+       x->left = y->right;
+
+       if( !parent ) //        is y the root node?
+               page->root = left;
+       else if( cmp == 1 )
+               parent->left = left;
+       else
+               parent->right = left;
+
+       y->right = slot;
+}
+
+//     delete fence slot from rbtree at path point
+//     return with new fence slot
+
+uint bt_rbremovefence (BtPage page, uint slot, BtPathStk *path)
+{
+BtSlot *node = slotptr (page,slot), *parent, *sibling, *grand;
+uint red = node->red, lvl, fence, idx, left;
+
+       if( lvl =  path->lvl ) {
+               parent = slotptr(page,path->entry[lvl - 1].slot);
+               parent->right = node->left;
+       } else
+               page->root = node->left;
+
+       if( fence = node->left )
+               node = slotptr(page,fence);
+       else {
+               parent->fence = 1;
+               return path->entry[--path->lvl].slot;
+       }
+
+       //  extend path to new fence
+
+       path->entry[page->lvl].slot = fence;
+
+       while( slot = slotptr(page, fence)->right )
+               path->entry[++page->lvl].slot = fence = slot;
+
+       slotptr(page,fence)->fence = 1;
+
+       //      fixup colors
+
+       if( !red )
+        while( !node->red && lvl ) {
+               left = parent->left;
+               sibling = slotptr(page,left);
+               if( sibling->red ) {
+                 sibling->red = 0;
+                 parent->red = 1;
+                 if( lvl > 1 )
+                       grand = slotptr(page,path->entry[lvl-2].slot);
+                 else
+                       grand = NULL;
+                 bt_rightrotate(page, path->entry[lvl-1].slot, grand, -1);
+                 sibling = slotptr(page,parent->left);
+
+                 for( idx = ++path->lvl; idx > lvl - 1; idx-- )
+                       path->entry[idx].slot = path->entry[idx-1].slot;
+
+                 path->entry[idx].slot = left; 
+               }
+
+               if( !sibling->right || !slotptr(page,sibling->right)->red )
+                 if( !sibling->left || !slotptr(page,sibling->left)->red ) {
+                       sibling->red = 1;
+                       node = parent;
+                       parent = grand;
+                       lvl--;
+                       continue;
+                 }
+
+               if( !sibling->left || !slotptr(page,sibling->left)->red ) {
+                       if( sibling->right )
+                         slotptr(page,sibling->right)->red = 0;
+
+                       sibling->red = 1;
+                       bt_leftrotate (page, parent->left, parent, 1);
+                       sibling = slotptr(page,parent->left);
+               }
+
+               slotptr(page, sibling->left)->red = 0;
+               sibling->red = parent->red;
+               parent->red = 0;
+               bt_rightrotate(page, path->entry[lvl-1].slot, grand, -1);
+               break;
+        }
+
+       slotptr(page,page->root)->red = 0;
+       return fence;
+}
+
+//     insert slot into rbtree at path point
+
+void bt_rbinsert (BtPage page, uint slot, BtPathStk *path)
+{
+BtSlot *parent = slotptr(page,path->entry[path->lvl].slot);
+BtSlot *uncle, *grand;
+int lvl = path->lvl;
+
+       if( path->entry[lvl].cmp == 1 )
+               parent->left = slot;
+       else
+               parent->right = slot;
+
+       slotptr(page,slot)->red = 1;
+
+       while( lvl > 0 && parent->red ) {
+         grand = slotptr(page,path->entry[lvl-1].slot);
+
+         if( path->entry[lvl-1].cmp == 1 ) { // was grandparent left followed?
+               uncle = slotptr(page,grand->right);
+               if( grand->right && uncle->red ) {
+                 parent->red = 0;
+                 uncle->red = 0;
+                 grand->red = 1;
+
+                 // move to grandparent & its parent (if any)
+
+                 slot = path->entry[--lvl].slot;
+                 if( !lvl )
+                       break;
+                 parent = slotptr(page,path->entry[--lvl].slot);
+                 continue;
+               }
+
+               // was the parent right link followed?
+               // if so, left rotate parent
+
+               if( path->entry[lvl].cmp == -1 ) {
+                 bt_leftrotate(page, path->entry[lvl].slot, grand, path->entry[lvl-1].cmp);
+                 parent = slotptr(page,slot);  // slot was rotated to parent
+               }
+
+               parent->red = 0;
+               grand->red = 1;
+
+               //      get pointer to grandparent's parent
+
+               if( lvl>1 )
+               grand = slotptr(page,path->entry[lvl-2].slot);
+               else
+                       grand = NULL;
+
+               //  right rotate the grandparent slot
+
+               slot = path->entry[lvl-1].slot;
+               bt_rightrotate(page, slot, grand, path->entry[lvl-2].cmp);
+               return;
+         } else {      // symmetrical case
+               uncle = slotptr(page,grand->left);
+               if( grand->left && uncle->red ) {
+                 uncle->red = 0;
+                 parent->red = 0;
+                 grand->red = 1;
+
+                 // move to grandparent & its parent (if any)
+                 slot = path->entry[--lvl].slot;
+                 if( !lvl )
+                       break;
+                 parent = slotptr(page,path->entry[--lvl].slot);
+                 continue;
+               }
+
+               // was the parent left link followed?
+               // if so, right rotate parent
+
+               if( path->entry[lvl].cmp == 1 ) {
+                 bt_rightrotate(page, path->entry[lvl].slot, grand, path->entry[lvl-1].cmp);
+                 parent = slotptr(page,slot);  // slot was rotated to parent
+               }
+
+               parent->red = 0;
+               grand->red = 1;
+
+               //      get pointer to grandparent's parent
+
+               if( lvl>1 )
+               grand = slotptr(page,path->entry[lvl-2].slot);
+               else
+                       grand = NULL;
+
+               //  left rotate the grandparent slot
+
+               slot = path->entry[lvl-1].slot;
+               bt_leftrotate(page, slot, grand, path->entry[lvl-2].cmp);
+               return;
+         }
+       }
+
+       //      reset root color
+
+       slotptr(page,page->root)->red = 0;
+}
+
+//     transfer a slot from one page to another
+
+void bt_xfrslot (BtPage page, BtPage src, uint slot, BtPathStk *path, uint copykey)
+{
+BtKey key = keyptr(src,slot);
+BtVal val = valptr(src,slot);
+BtSlot *node;
+
+       // calculate next available slot and copy key into page
+
+  if( copykey ) {
+       page->min -= val->len + 1; // reset lowest used offset
+       ((unsigned char *)page)[page->min] = val->len;
+       memcpy ((unsigned char *)page + page->min +1, val->value, val->len );
+
+       page->min -= key->len + 1; // reset lowest used offset
+       ((unsigned char *)page)[page->min] = key->len;
+       memcpy ((unsigned char *)page + page->min +1, key->key, key->len );
+  }
+
+  node = slotptr(page, ++page->cnt);
+  node->off = copykey ? page->min : slotptr(src,slot)->off;
+  node->fence = slotptr(src,slot)->fence;
+  node->dead = slotptr(src,slot)->dead;
+
+  page->act++;
+  
+  if( path->lvl < 0 ) {
+       page->root = page->cnt;
+       return;
+  }
+
+  bt_rbinsert (page, page->cnt, path);
+}
+
+//     copy keys across into a binomial tree
+
+void bt_copykeys (BtPage page, uint slot, BtPage frame, uint *que, int lvl)
+{
+BtSlot *node = slotptr(page,slot);
+BtKey key = ((BtKey)((unsigned char*)(frame) + node->off));
+BtVal val = ((BtVal)(key->key + key->len));
+uint off, nxt = page->min;
+uint right = node->right;
+uint left = node->left;
+
+       // copy value
+
+       nxt -= val->len + 1;
+       ((unsigned char *)page)[nxt] = val->len;
+       memcpy ((unsigned char *)page + nxt + 1, val->value, val->len);
+
+       //      copy key
+
+       nxt -= key->len + 1;
+       memcpy ((unsigned char *)page + nxt, key, key->len + 1);
+       node->off = nxt;
+       page->min = nxt;
+
+       //      punt if group of keys has filled a 4K VM block
+       //      which we determine by the number of red/black
+       //      levels have been copied across.
+
+       if( lvl > BT_binomial ) {
+         if( left )
+               que[++(*que)] = left;
+         if( right )
+               que[++(*que)] = right;
+         return;
+       }
+
+       if( left )
+         bt_copykeys (page, left, frame, que, lvl+1);
+
+       if( right )
+         bt_copykeys (page, right, frame, que, lvl+1);
+}
+
+//     clean page and rebuild red-black tree
+//     return 0 - page needs splitting
+//     >0  cleanup done, try again
+
+uint bt_cleanpage(BtDb *bt, BtPage page, uint keylen, uint vallen)
+{
+uint max = page->cnt;
+BtPathStk path[1];
+uint cnt, slot;
+BtSlot *node;
+uid right;
+BtKey key;
+BtVal val;
+
+       //      skip cleanup if nothing to reclaim
+
+       if( !page->dirty )
+               return 0;
+
+       memcpy (bt->frame, page, bt->mgr->page_size);
+
+       // skip page info and set rest of page to zero
+
+       memset (page+1, 0, bt->mgr->page_size - sizeof(*page));
+       page->min = bt->mgr->page_size;
+       page->dirty = 0;
+       page->root = 0;
+       page->cnt = 0;
+       page->act = 0;
+
+       // try cleaning up page first
+       // by removing deleted keys
+       //      from the heap
+
+       right = bt_getid (bt->frame->right);
+       slot = 0;
+
+       while( ++slot <= max ) {
+               node = slotptr(bt->frame,slot);
+
+               if( !node->off )
+                       continue;
+
+               if( page->lvl || !node->fence )
+                  if( node->dead )
+                       continue;
+
+               // xfr the slot to the page b-heap using keys from bt->frame
+
+               key = keyptr(bt->frame, slot);
+               bt_findslot (page, bt->frame, key->key, key->len, path, node->fence && !right);
+               bt_xfrslot (page, bt->frame, slot, path, 0);
+       }
+
+       // now copy keys & values across from bt->frame to page
+       //      in blocks of BT_binomial tree levels
+
+       page->min = bt->mgr->page_size;
+       bt->que[1] = page->root;
+       *bt->que = 1;
+       cnt = 0;
+
+       do bt_copykeys (page, bt->que[++cnt], bt->frame, bt->que, 0);
+       while( cnt < *bt->que );
+
+       if( page->min < (page->cnt+1) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1 )
+               return 0;
+
+       return 1;
+}
+
+// split the root and raise the height of the btree
+
+BTERR bt_splitroot(BtDb *bt, BtPageSet *root, unsigned char *leftkey, uid page_no2)
+{
+uint nxt = bt->mgr->page_size;
+unsigned char value[BtId];
+BtSlot *node;
+uid left;
+
+       //  Obtain an empty page to use, and copy the current
+       //  root contents into it, e.g. lower keys
+
+       if( !(left = bt_newpage(bt, root->page)) )
+               return bt->err;
+
+       // preserve the page info at the bottom
+       // of higher keys and set rest to zero
+
+       memset(root->page+1, 0, bt->mgr->page_size - sizeof(*root->page));
+
+       // insert lower keys page fence key on newroot page as first key
+
+       nxt -= BtId + 1;
+       bt_putid (value, left);
+       ((unsigned char *)root->page)[nxt] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 1, value, BtId);
+
+       nxt -= *leftkey + 1;
+       memcpy ((unsigned char *)root->page + nxt, leftkey, *leftkey + 1);
+       node = slotptr(root->page, 1);
+       node->off = nxt;
+       node->red = 1;
+       
+       // insert stopper key on newroot page
+       // and increase the root height
+
+       nxt -= 3 + BtId + 1;
+       ((unsigned char *)root->page)[nxt] = 2;
+       ((unsigned char *)root->page)[nxt+1] = 0xff;
+       ((unsigned char *)root->page)[nxt+2] = 0xff;
+
+       bt_putid (value, page_no2);
+       ((unsigned char *)root->page)[nxt+3] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 4, value, BtId);
+       node = slotptr(root->page, 2);
+       node->fence = 1;
+       node->off = nxt;
+       node->left = 1;
+
+       bt_putid(root->page->right, 0);
+       root->page->min = nxt;          // reset lowest used offset and key count
+       root->page->root = 2;
+       root->page->cnt = 2;
+       root->page->act = 2;
+       root->page->lvl++;
+
+       // release and unpin root
+
+       bt_unlockpage(BtLockWrite, root->latch);
+       bt_unpinlatch (root->latch);
+       bt_unpinpool (root->pool);
+       return 0;
+}
+
+//     copy sub-tree from one node to the root of another
+//     return slot number in destination
+
+uint bt_copysubtree (BtDb *bt, BtPage dest, BtPage src, uint idx, uint parent, uint off)
+{
+BtSlot *node = slotptr(src, idx);
+uint child, slot;
+
+       slot = parent * 2 + off;
+
+       if( slot > bt->base )
+               slot = ++dest->cnt;
+
+       *slotptr(dest, slot) = *node;
+       dest->act++;
+
+       if( child = node->left )
+         child = bt_copysubtree (bt, dest, src, child, slot, 0);
+
+       slotptr(dest, slot)->left = child;
+
+       if( child = node->right )
+         child = bt_copysubtree (bt, dest, src, child, slot, 1);
+
+       slotptr(dest, slot)->right = child;
+       return slot;
+}
+
+//  split already locked full node
+//     return unlocked.
+
+BTERR bt_splitpage (BtDb *bt, BtPageSet *set)
+{
+unsigned char fencekey[256], rightkey[256];
+unsigned char value[BtId];
+uint lvl = set->page->lvl;
+uint prev, fence, stopper;
+BtPageSet right[1];
+BtPathStk path[1];
+uint cnt, slot;
+BtSlot *node;
+BtKey key;
+BtVal val;
+
+       //  split higher half of keys to bt->frame
+
+       slot = slotptr(set->page, set->page->root)->right;
+       memset (bt->frame, 0, bt->mgr->page_size);
+       bt->base = set->page->cnt / 2;
+       bt->frame->cnt = bt->base;
+
+       bt->frame->root = bt_copysubtree (bt, bt->frame, set->page, slot, 0, 1);
+       bt->frame->lvl = set->page->lvl;
+
+       // now copy keys & values across from page to bt->frame
+       //      in blocks of BT_binomial tree levels
+
+       slotptr(bt->frame,bt->frame->root)->red = 0;
+       bt->frame->min = bt->mgr->page_size;
+       bt->que[1] = bt->frame->root;
+       *bt->que = 1;
+       cnt = 0;
+
+       do bt_copykeys (bt->frame, bt->que[++cnt], set->page, bt->que, 0);
+       while( cnt < *bt->que );
+
+       // remember existing fence key for new page to the right
+
+       fence = set->page->root;
+       slot = set->page->root;
+
+       while( slot = slotptr(set->page,slot)->right )
+               fence = slot;
+
+       key = keyptr(set->page,fence);
+       memcpy (rightkey, key, key->len + 1);
+
+       bt->frame->bits = bt->mgr->page_bits;
+       bt->frame->lvl = lvl;
+
+       // link right node
+
+       if( set->page_no > ROOT_page )
+               memcpy (bt->frame->right, set->page->right, BtId);
+
+       stopper = !bt_getid (bt->frame->right);
+
+       //      get new free page and write higher keys in bt->frame to it.
+
+       if( !(right->page_no = bt_newpage(bt, bt->frame)) )
+               return bt->err;
+
+       //      update lower keys to continue in old page
+
+       memcpy (bt->frame, set->page, bt->mgr->page_size);
+       memset (set->page+1, 0, bt->mgr->page_size - sizeof(*set->page));
+       slot = slotptr(bt->frame, bt->frame->root)->left;
+       set->page->cnt = bt->base;
+       set->page->dirty = 0;
+       set->page->act = 0;
+
+       //  assemble page of smaller keys in set->page
+
+       set->page->root = bt_copysubtree (bt, set->page, bt->frame, slot, 0, 1);
+       set->page->min = bt->mgr->page_size;
+
+       bt->que[1] = set->page->root;
+       *bt->que = 1;
+       cnt = 0;
+
+       do bt_copykeys (set->page, bt->que[++cnt], bt->frame, bt->que, 0);
+       while( cnt < *bt->que );
+
+       bt_putid(set->page->right, right->page_no);
+
+       //      translate old r/b root as new left fence
+
+       key = keyptr(bt->frame,bt->frame->root);
+       bt_findslot (set->page, set->page, key->key, key->len, path, 0);
+       bt_xfrslot (set->page, bt->frame, bt->frame->root, path, 1);
+
+       node = slotptr(set->page,set->page->cnt);
+       memcpy(fencekey, key, key->len + 1);
+       node->fence = 1;
+
+       // if current page is the root page, split it
+
+       if( set->page_no == ROOT_page )
+               return bt_splitroot (bt, set, fencekey, right->page_no);
+
+       // insert new fences in their parent pages
+
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockParent, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // insert new fence for reformulated left block of smaller keys
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, fencekey+1, *fencekey, lvl+1, value, BtId, 0) )
+               return bt->err;
+
+       // switch fence for right block of larger keys to new right page
+
+       bt_putid (value, right->page_no);
+
+       if( bt_insertkey (bt, rightkey+1, *rightkey, lvl+1, value, BtId, stopper) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_unpinlatch (right->latch);
+       return 0;
+}
+//  Insert new key into the btree at given level.
+
+BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint keylen, uint lvl, void *value, uint vallen, uint stopper)
+{
+BtPathStk path[1];
+BtPageSet set[1];
+uint slot, idx;
+BtSlot *node;
+uint reuse;
+BtKey ptr;
+BtVal val;
+
+       while( 1 ) {
+               if( slot = bt_loadpage (bt, set, key, keylen, lvl, BtLockWrite, path, stopper) )
+                       node = slotptr(set->page, slot);
+               else {
+                       if( !bt->err )
+                               bt->err = BTERR_ovflw;
+                       return bt->err;
+               }
+
+               // if key already exists, update id and return
+
+               if( reuse = !path->entry[path->lvl].cmp )
+                 if( val = valptr(set->page, slot), val->len >= vallen ) {
+                       if( node->dead )
+                               set->page->act++;
+                       node->dead = 0;
+                       val->len = vallen;
+                       memcpy (val->value, value, vallen);
+                       bt_unlockpage(BtLockWrite, set->latch);
+                       bt_unpinlatch (set->latch);
+                       bt_unpinpool (set->pool);
+                       return 0;
+                 } else {
+                       if( !node->dead )
+                               set->page->act--;
+                       set->page->dirty = 1;
+                       node->dead = 1;
+                 }
+
+               // check if page has enough space
+
+               if( set->page->min >= (set->page->cnt+1) * sizeof(BtSlot) + sizeof(*set->page) + keylen + 1 + vallen + 1)
+                       break;
+
+               if( bt_cleanpage (bt, set->page, keylen, vallen) ) {
+                       bt_unlockpage (BtLockWrite, set->latch);
+                       bt_unpinlatch (set->latch);
+                       bt_unpinpool (set->pool);
+                       continue;       // find new slot number
+               }
+
+               if( bt_splitpage (bt, set) )
+                       return bt->err;
+       }
+
+       // calculate next available slot and copy key into page
+
+       set->page->min -= vallen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = vallen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, value, vallen );
+
+       set->page->min -= keylen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = keylen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, key, keylen );
+
+       set->page->act++;
+
+       if( !reuse ) {
+               slot = ++set->page->cnt;
+               node = slotptr(set->page,slot);
+       }
+
+       node->off = set->page->min;
+       node->dead = 0;
+
+       if( !reuse )
+               bt_rbinsert (set->page, slot, path);
+
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+BTERR bt_startpage (BtDb *bt, uid page_no)
+{
+BtPageSet set[1];
+BtSlot *node;
+uint slot;
+
+       if( set->pool = bt_pinpool (bt, page_no) )
+               set->page = bt_page (bt, set->pool, page_no);
+       else
+               return 0;
+
+       set->latch = bt_pinlatch (bt, page_no);
+    bt_lockpage(BtLockRead, set->latch);
+
+       memcpy (bt->cursor, set->page, bt->mgr->page_size);
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       slot = bt->cursor->root;
+       bt->path->lvl = -1;
+
+       do {
+               bt->path->entry[++bt->path->lvl].slot = slot;
+               bt->path->entry[bt->path->lvl].cmp = 1;
+               slot = slotptr(bt->cursor, slot)->left;
+       } while( slot && bt->path->lvl < BT_maxbits );
+
+       slot =  bt->path->entry[bt->path->lvl].slot;
+
+       while( slot && slotptr(bt->cursor,slot)->dead )
+               slot = bt_nextkey (bt);
+
+       return slot;
+}
+
+//  cache page of keys into cursor and return starting slot for given key
+
+uint bt_startkey (BtDb *bt, unsigned char *key, uint len)
+{
+BtPageSet set[1];
+uint slot;
+
+       // cache page for retrieval
+
+       if( slot = bt_loadpage (bt, set, key, len, 0, BtLockRead, bt->path, 0) )
+         memcpy (bt->cursor, set->page, bt->mgr->page_size);
+       else
+         return 0;
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       while( bt->path->lvl && bt->path->entry[bt->path->lvl - 1].cmp < 0 )
+         slot = bt->path->entry[--bt->path->lvl].slot;
+
+       return slot;
+}
+
+//  return next slot for cursor page
+//  or slide cursor right into next page
+
+uint bt_nextkey (BtDb *bt)
+{
+uid right;
+uint slot;
+
+  while( slot = bt_nextslot (bt->cursor, bt->path) )
+       if( slotptr(bt->cursor,slot)->dead )
+         continue;
+       else
+         return slot;
+
+  if( right = bt_getid(bt->cursor->right) )
+       return bt_startpage (bt, right);
+
+  return bt->err = 0;
+}
+
+BtKey bt_key(BtDb *bt, uint slot)
+{
+       return keyptr(bt->cursor, slot);
+}
+
+BtVal bt_val(BtDb *bt, uint slot)
+{
+       return valptr(bt->cursor,slot);
+}
+
+#ifdef STANDALONE
+
+#ifndef unix
+double getCpuTime(int type)
+{
+FILETIME crtime[1];
+FILETIME xittime[1];
+FILETIME systime[1];
+FILETIME usrtime[1];
+SYSTEMTIME timeconv[1];
+double ans = 0;
+
+       memset (timeconv, 0, sizeof(SYSTEMTIME));
+
+       switch( type ) {
+       case 0:
+               GetSystemTimeAsFileTime (xittime);
+               FileTimeToSystemTime (xittime, timeconv);
+               ans = (double)timeconv->wDayOfWeek * 3600 * 24;
+               break;
+       case 1:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (usrtime, timeconv);
+               break;
+       case 2:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (systime, timeconv);
+               break;
+       }
+
+       ans += (double)timeconv->wHour * 3600;
+       ans += (double)timeconv->wMinute * 60;
+       ans += (double)timeconv->wSecond;
+       ans += (double)timeconv->wMilliseconds / 1000;
+       return ans;
+}
+#else
+#include <time.h>
+#include <sys/resource.h>
+
+double getCpuTime(int type)
+{
+struct rusage used[1];
+struct timeval tv[1];
+
+       switch( type ) {
+       case 0:
+               gettimeofday(tv, NULL);
+               return (double)tv->tv_sec + (double)tv->tv_usec / 1000000;
+
+       case 1:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000;
+
+       case 2:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000;
+       }
+
+       return 0;
+}
+#endif
+
+uint bt_latchaudit (BtDb *bt)
+{
+ushort idx, hashidx;
+uid next, page_no;
+BtLatchSet *latch;
+uint cnt = 0;
+BtKey ptr;
+
+#ifdef unix
+       posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+       if( *(ushort *)(bt->mgr->latchmgr->lock) )
+               fprintf(stderr, "Alloc page locked\n");
+       *(ushort *)(bt->mgr->latchmgr->lock) = 0;
+
+       for( idx = 1; idx <= bt->mgr->latchmgr->latchdeployed; idx++ ) {
+               latch = bt->mgr->latchsets + idx;
+               if( *latch->readwr->rin & MASK )
+                       fprintf(stderr, "latchset %d rwlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->readwr, 0, sizeof(RWLock));
+
+               if( *latch->access->rin & MASK )
+                       fprintf(stderr, "latchset %d accesslocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->access, 0, sizeof(RWLock));
+
+               if( *latch->parent->rin & MASK )
+                       fprintf(stderr, "latchset %d parentlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->parent, 0, sizeof(RWLock));
+
+               if( latch->pin ) {
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+                       latch->pin = 0;
+               }
+       }
+
+       for( hashidx = 0; hashidx < bt->mgr->latchmgr->latchhash; hashidx++ ) {
+         if( *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) )
+                       fprintf(stderr, "hash entry %d locked\n", hashidx);
+
+         *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) = 0;
+
+         if( idx = bt->mgr->latchmgr->table[hashidx].slot ) do {
+               latch = bt->mgr->latchsets + idx;
+               if( *(ushort *)latch->busy )
+                       fprintf(stderr, "latchset %d busylocked for page %.8x\n", idx, latch->page_no);
+               *(ushort *)latch->busy = 0;
+               if( latch->pin )
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+         } while( idx = latch->next );
+       }
+
+       next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+       page_no = LEAF_page;
+
+       while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+       off64_t off = page_no << bt->mgr->page_bits;
+#ifdef unix
+               pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+
+                 if( *amt <  bt->mgr->page_size )
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+#endif
+               if( !bt->frame->free )
+                if( !bt->frame->lvl )
+                       cnt += bt->frame->act;
+
+               if( page_no > LEAF_page )
+                       next = page_no + 1;
+               page_no = next;
+       }
+       return cnt - 1;
+}
+
+typedef struct {
+       char idx;
+       char *type;
+       char *infile;
+       BtMgr *mgr;
+       int num;
+} ThreadArg;
+
+//  standalone program to index file of keys
+//  then list them onto std-out
+
+#ifdef unix
+void *index_file (void *arg)
+#else
+uint __stdcall index_file (void *arg)
+#endif
+{
+int line = 0, found = 0, cnt = 0;
+uid next, page_no = LEAF_page; // start on first page of leaves
+unsigned char key[256];
+ThreadArg *args = arg;
+int ch, len = 0, slot;
+BtKey ptr;
+BtDb *bt;
+FILE *in;
+
+       bt = bt_open (args->mgr);
+
+       switch(args->type[0] | 0x20)
+       {
+       case 'a':
+               fprintf(stderr, "started latch mgr audit\n");
+               cnt = bt_latchaudit (bt);
+               fprintf(stderr, "finished latch mgr audit, found %d keys\n", cnt);
+               break;
+
+       case 'p':
+               fprintf(stderr, "started pennysort for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( bt_insertkey (bt, key, 10, 0, key + 10, len - 10, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'w':
+               fprintf(stderr, "started indexing for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_insertkey (bt, key, len, 0, NULL, 0, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'd':
+               fprintf(stderr, "started deleting keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_deletekey (bt, key, len, 0, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for keys, %d \n", args->infile, line);
+               break;
+
+       case 'f':
+               fprintf(stderr, "started finding keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_findkey (bt, key, len, NULL, 0) == 0 )
+                               found++;
+                         else if( bt->err )
+                               fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found);
+               break;
+
+       case 's':
+               fprintf(stderr, "started scanning\n");
+
+               if( slot = bt_startpage (bt, LEAF_page) )
+                 do {
+                       ptr = keyptr(bt->cursor, slot);
+                       fwrite (ptr->key, ptr->len, 1, stdout);
+                       fputc ('\n', stdout);
+                       cnt++;
+                 } while( slot = bt_nextkey (bt) );
+
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+
+       case 'c':
+#ifdef unix
+               posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+               fprintf(stderr, "started counting\n");
+               next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+               page_no = LEAF_page;
+
+               while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+               uid off = page_no << bt->mgr->page_bits;
+#ifdef unix
+                 pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       return bt->err = BTERR_map;
+
+                 if( *amt <  bt->mgr->page_size )
+                       return bt->err = BTERR_map;
+#endif
+                       if( !bt->frame->free && !bt->frame->lvl )
+                               cnt += bt->frame->act;
+                       if( page_no > LEAF_page )
+                               next = page_no + 1;
+                       page_no = next;
+               }
+               
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+       }
+
+       bt_close (bt);
+#ifdef unix
+       return NULL;
+#else
+       return 0;
+#endif
+}
+
+typedef struct timeval timer;
+
+int main (int argc, char **argv)
+{
+int idx, cnt, len, slot, err;
+int segsize, bits = 16;
+double start, stop;
+#ifdef unix
+pthread_t *threads;
+#else
+HANDLE *threads;
+#endif
+ThreadArg *args;
+uint poolsize = 0;
+float elapsed;
+int num = 0;
+char key[1];
+BtMgr *mgr;
+BtKey ptr;
+BtDb *bt;
+
+       if( argc < 3 ) {
+               fprintf (stderr, "Usage: %s idx_file Read/Write/Scan/Delete/Find [page_bits mapped_segments seg_bits line_numbers src_file1 src_file2 ... ]\n", argv[0]);
+               fprintf (stderr, "  where page_bits is the page size in bits\n");
+               fprintf (stderr, "  mapped_segments is the number of mmap segments in buffer pool\n");
+               fprintf (stderr, "  seg_bits is the size of individual segments in buffer pool in pages in bits\n");
+               fprintf (stderr, "  line_numbers = 1 to append line numbers to keys\n");
+               fprintf (stderr, "  src_file1 thru src_filen are files of keys separated by newline\n");
+               exit(0);
+       }
+
+       start = getCpuTime(0);
+
+       if( argc > 3 )
+               bits = atoi(argv[3]);
+
+       if( argc > 4 )
+               poolsize = atoi(argv[4]);
+
+       if( !poolsize )
+               fprintf (stderr, "Warning: no mapped_pool\n");
+
+       if( poolsize > 65535 )
+               fprintf (stderr, "Warning: mapped_pool > 65535 segments\n");
+
+       if( argc > 5 )
+               segsize = atoi(argv[5]);
+       else
+               segsize = 4;    // 16 pages per mmap segment
+
+       if( argc > 6 )
+               num = atoi(argv[6]);
+
+       cnt = argc - 7;
+#ifdef unix
+       threads = malloc (cnt * sizeof(pthread_t));
+#else
+       threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE));
+#endif
+       args = malloc (cnt * sizeof(ThreadArg));
+
+       mgr = bt_mgr ((argv[1]), BT_rw, bits, poolsize, segsize, poolsize / 8);
+
+       if( !mgr ) {
+               fprintf(stderr, "Index Open Error %s\n", argv[1]);
+               exit (1);
+       }
+
+       //      fire off threads
+
+       for( idx = 0; idx < cnt; idx++ ) {
+               args[idx].infile = argv[idx + 7];
+               args[idx].type = argv[2];
+               args[idx].mgr = mgr;
+               args[idx].num = num;
+               args[idx].idx = idx;
+#ifdef unix
+               if( err = pthread_create (threads + idx, NULL, index_file, args + idx) )
+                       fprintf(stderr, "Error creating thread %d\n", err);
+#else
+               threads[idx] = (HANDLE)_beginthreadex(NULL, 65536, index_file, args + idx, 0, NULL);
+#endif
+       }
+
+       //      wait for termination
+
+#ifdef unix
+       for( idx = 0; idx < cnt; idx++ )
+               pthread_join (threads[idx], NULL);
+#else
+       WaitForMultipleObjects (cnt, threads, TRUE, INFINITE);
+
+       for( idx = 0; idx < cnt; idx++ )
+               CloseHandle(threads[idx]);
+
+#endif
+       elapsed = getCpuTime(0) - start;
+       fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(1);
+       fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(2);
+       fprintf(stderr, " sys  %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+
+       bt_mgrclose (mgr);
+}
+
+#endif //STANDALONE
diff --git a/threadskv3.c b/threadskv3.c
new file mode 100644 (file)
index 0000000..bc7db88
--- /dev/null
@@ -0,0 +1,2729 @@
+// btree version threadskv3 sched_yield version
+//     with reworked bt_deletekey code
+//     and phase-fair reader writer lock
+//     and librarian page split code
+// 02 SEP 2014
+
+// author: karl malbrain, malbrain@cal.berkeley.edu
+
+/*
+This work, including the source code, documentation
+and related data, is placed into the public domain.
+
+The orginal author is Karl Malbrain.
+
+THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY
+OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF
+MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE,
+ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE
+RESULTING FROM THE USE, MODIFICATION, OR
+REDISTRIBUTION OF THIS SOFTWARE.
+*/
+
+// Please see the project home page for documentation
+// code.google.com/p/high-concurrency-btree
+
+#define _FILE_OFFSET_BITS 64
+#define _LARGEFILE64_SOURCE
+
+#ifdef linux
+#define _GNU_SOURCE
+#endif
+
+#ifdef unix
+#include <unistd.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <sys/time.h>
+#include <sys/mman.h>
+#include <errno.h>
+#include <pthread.h>
+#else
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h>
+#include <fcntl.h>
+#include <process.h>
+#include <intrin.h>
+#endif
+
+#include <memory.h>
+#include <string.h>
+#include <stddef.h>
+
+typedef unsigned long long     uid;
+
+#ifndef unix
+typedef unsigned long long     off64_t;
+typedef unsigned short         ushort;
+typedef unsigned int           uint;
+#endif
+
+#define BT_latchtable  128                                     // number of latch manager slots
+
+#define BT_ro 0x6f72   // ro
+#define BT_rw 0x7772   // rw
+
+#define BT_maxbits             24                                      // maximum page size in bits
+#define BT_minbits             9                                       // minimum page size in bits
+#define BT_minpage             (1 << BT_minbits)       // minimum page size
+#define BT_maxpage             (1 << BT_maxbits)       // maximum page size
+
+/*
+There are five lock types for each node in three independent sets: 
+1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. 
+2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. 
+3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. 
+4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. 
+5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. 
+*/
+
+typedef enum{
+       BtLockAccess,
+       BtLockDelete,
+       BtLockRead,
+       BtLockWrite,
+       BtLockParent
+} BtLock;
+
+//     definition for phase-fair reader/writer lock implementation
+
+typedef struct {
+       ushort rin[1];
+       ushort rout[1];
+       ushort ticket[1];
+       ushort serving[1];
+} RWLock;
+
+#define PHID 0x1
+#define PRES 0x2
+#define MASK 0x3
+#define RINC 0x4
+
+//     definition for spin latch implementation
+
+// exclusive is set for write access
+// share is count of read accessors
+// grant write lock when share == 0
+
+volatile typedef struct {
+       ushort exclusive:1;
+       ushort pending:1;
+       ushort share:14;
+} BtSpinLatch;
+
+#define XCL 1
+#define PEND 2
+#define BOTH 3
+#define SHARE 4
+
+//  hash table entries
+
+typedef struct {
+       BtSpinLatch latch[1];
+       volatile ushort slot;           // Latch table entry at head of chain
+} BtHashEntry;
+
+//     latch manager table structure
+
+typedef struct {
+       RWLock readwr[1];               // read/write page lock
+       RWLock access[1];               // Access Intent/Page delete
+       RWLock parent[1];               // Posting of fence key in parent
+       BtSpinLatch busy[1];            // slot is being moved between chains
+       volatile ushort next;           // next entry in hash table chain
+       volatile ushort prev;           // prev entry in hash table chain
+       volatile ushort pin;            // number of outstanding locks
+       volatile ushort hash;           // hash slot entry is under
+       volatile uid page_no;           // latch set page number
+} BtLatchSet;
+
+//     Define the length of the page and key pointers
+
+#define BtId 6
+
+//     Page key slot definition.
+
+//     If BT_maxbits is 15 or less, you can save 2 bytes
+//     for each key stored by making the two uints
+//     into ushorts.
+
+//     Keys are marked dead, but remain on the page until
+//     it cleanup is called. The fence key (highest key) for
+//     the page is always present, even after cleanup.
+
+typedef struct {
+       uint off:BT_maxbits;            // page offset for key start
+       uint librarian:1;                       // set for librarian slot
+       uint dead:1;                            // set for deleted key
+} BtSlot;
+
+//     The key structure occupies space at the upper end of
+//     each page.  It's a length byte followed by the key
+//     bytes.
+
+typedef struct {
+       unsigned char len;
+       unsigned char key[1];
+} *BtKey;
+
+//     the value structure also occupies space at the upper
+//     end of the page.
+
+typedef struct {
+       unsigned char len;
+       unsigned char value[1];
+} *BtVal;
+
+//     The first part of an index page.
+//     It is immediately followed
+//     by the BtSlot array of keys.
+
+typedef struct BtPage_ {
+       uint cnt;                                       // count of keys in page
+       uint act;                                       // count of active keys
+       uint min;                                       // next key offset
+       uint garbage;                           // page garbage in bytes
+       unsigned char bits:7;           // page size in bits
+       unsigned char free:1;           // page is on free chain
+       unsigned char lvl:7;            // level of page
+       unsigned char kill:1;           // page is being deleted
+       unsigned char right[BtId];      // page number to right
+} *BtPage;
+
+//     The memory mapping pool table buffer manager entry
+
+typedef struct {
+       uid  basepage;                          // mapped base page number
+       char *map;                                      // mapped memory pointer
+       ushort slot;                            // slot index in this array
+       ushort pin;                                     // mapped page pin counter
+       void *hashprev;                         // previous pool entry for the same hash idx
+       void *hashnext;                         // next pool entry for the same hash idx
+#ifndef unix
+       HANDLE hmap;                            // Windows memory mapping handle
+#endif
+} BtPool;
+
+#define CLOCK_bit 0x8000               // bit in pool->pin
+
+//  The loadpage interface object
+
+typedef struct {
+       uid page_no;            // current page number
+       BtPage page;            // current page pointer
+       BtPool *pool;           // current page pool
+       BtLatchSet *latch;      // current page latch set
+} BtPageSet;
+
+//     structure for latch manager on ALLOC_page
+
+typedef struct {
+       struct BtPage_ alloc[1];        // next page_no in right ptr
+       unsigned char chain[BtId];      // head of free page_nos chain
+       BtSpinLatch lock[1];            // allocation area lite latch
+       ushort latchdeployed;           // highest number of latch entries deployed
+       ushort nlatchpage;                      // number of latch pages at BT_latch
+       ushort latchtotal;                      // number of page latch entries
+       ushort latchhash;                       // number of latch hash table slots
+       ushort latchvictim;                     // next latch entry to examine
+       BtHashEntry table[0];           // the hash table
+} BtLatchMgr;
+
+//     The object structure for Btree access
+
+typedef struct {
+       uint page_size;                         // page size    
+       uint page_bits;                         // page size in bits    
+       uint seg_bits;                          // seg size in pages in bits
+       uint mode;                                      // read-write mode
+#ifdef unix
+       int idx;
+#else
+       HANDLE idx;
+#endif
+       ushort poolcnt;                         // highest page pool node in use
+       ushort poolmax;                         // highest page pool node allocated
+       ushort poolmask;                        // total number of pages in mmap segment - 1
+       ushort hashsize;                        // size of Hash Table for pool entries
+       volatile uint evicted;          // last evicted hash table slot
+       ushort *hash;                           // pool index for hash entries
+       BtSpinLatch *latch;                     // latches for hash table slots
+       BtLatchMgr *latchmgr;           // mapped latch page from allocation page
+       BtLatchSet *latchsets;          // mapped latch set from latch pages
+       BtPool *pool;                           // memory pool page segments
+#ifndef unix
+       HANDLE halloc;                          // allocation and latch table handle
+#endif
+} BtMgr;
+
+typedef struct {
+       BtMgr *mgr;                     // buffer manager for thread
+       BtPage cursor;          // cached frame for start/next (never mapped)
+       BtPage frame;           // spare frame for the page split (never mapped)
+       uid cursor_page;        // current cursor page number   
+       unsigned char *mem;     // frame, cursor, page memory buffer
+       int found;                      // last delete or insert was found
+       int err;                        // last error
+} BtDb;
+
+typedef enum {
+       BTERR_ok = 0,
+       BTERR_struct,
+       BTERR_ovflw,
+       BTERR_lock,
+       BTERR_map,
+       BTERR_wrt,
+       BTERR_hash
+} BTERR;
+
+// B-Tree functions
+extern void bt_close (BtDb *bt);
+extern BtDb *bt_open (BtMgr *mgr);
+extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, void *value, uint vallen);
+extern BTERR  bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl);
+extern int bt_findkey    (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint vallen);
+extern uint bt_startkey  (BtDb *bt, unsigned char *key, uint len);
+extern uint bt_nextkey   (BtDb *bt, uint slot);
+
+//     manager functions
+extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolsize, uint segsize, uint hashsize);
+void bt_mgrclose (BtMgr *mgr);
+
+//  Helper functions to return slot values
+//     from the cursor page.
+
+extern BtKey bt_key (BtDb *bt, uint slot);
+extern BtVal bt_val (BtDb *bt, uint slot);
+
+//  BTree page number constants
+#define ALLOC_page             0       // allocation & latch manager hash table
+#define ROOT_page              1       // root of the btree
+#define LEAF_page              2       // first page of leaves
+#define LATCH_page             3       // pages for latch manager
+
+//     Number of levels to create in a new BTree
+
+#define MIN_lvl                        2
+
+//  The page is allocated from low and hi ends.
+//  The key slots are allocated from the bottom,
+//     while the text and value of the key
+//  are allocated from the top.  When the two
+//  areas meet, the page is split into two.
+
+//  A key consists of a length byte, two bytes of
+//  index number (0 - 65534), and up to 253 bytes
+//  of key value.  Duplicate keys are discarded.
+//  Associated with each key is a value byte string
+//     containing any value desired.
+
+//  The b-tree root is always located at page 1.
+//     The first leaf page of level zero is always
+//     located on page 2.
+
+//     The b-tree pages are linked with next
+//     pointers to facilitate enumerators,
+//     and provide for concurrency.
+
+//     When to root page fills, it is split in two and
+//     the tree height is raised by a new root at page
+//     one with two keys.
+
+//     Deleted keys are marked with a dead bit until
+//     page cleanup. The fence key for a leaf node is
+//     always present
+
+//  Groups of pages called segments from the btree are optionally
+//  cached with a memory mapped pool. A hash table is used to keep
+//  track of the cached segments.  This behaviour is controlled
+//  by the cache block size parameter to bt_open.
+
+//  To achieve maximum concurrency one page is locked at a time
+//  as the tree is traversed to find leaf key in question. The right
+//  page numbers are used in cases where the page is being split,
+//     or consolidated.
+
+//  Page 0 is dedicated to lock for new page extensions,
+//     and chains empty pages together for reuse. It also
+//     contains the latch manager hash table.
+
+//     The ParentModification lock on a node is obtained to serialize posting
+//     or changing the fence key for a node.
+
+//     Empty pages are chained together through the ALLOC page and reused.
+
+//     Access macros to address slot and key values from the page
+//     Page slots use 1 based indexing.
+
+#define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1))
+#define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off))
+#define valptr(page, slot) ((BtVal)(keyptr(page,slot)->key + keyptr(page,slot)->len))
+
+void bt_putid(unsigned char *dest, uid id)
+{
+int i = BtId;
+
+       while( i-- )
+               dest[i] = (unsigned char)id, id >>= 8;
+}
+
+uid bt_getid(unsigned char *src)
+{
+uid id = 0;
+int i;
+
+       for( i = 0; i < BtId; i++ )
+               id <<= 8, id |= *src++; 
+
+       return id;
+}
+
+//     Phase-Fair reader/writer lock implementation
+
+void WriteLock (RWLock *lock)
+{
+ushort w, r, tix;
+
+#ifdef unix
+       tix = __sync_fetch_and_add (lock->ticket, 1);
+#else
+       tix = _InterlockedExchangeAdd16 (lock->ticket, 1);
+#endif
+       // wait for our ticket to come up
+
+       while( tix != lock->serving[0] )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread ();
+#endif
+
+       w = PRES | (tix & PHID);
+#ifdef  unix
+       r = __sync_fetch_and_add (lock->rin, w);
+#else
+       r = _InterlockedExchangeAdd16 (lock->rin, w);
+#endif
+       while( r != *lock->rout )
+#ifdef unix
+               sched_yield();
+#else
+               SwitchToThread();
+#endif
+}
+
+void WriteRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_and (lock->rin, ~MASK);
+#else
+       _InterlockedAnd16 (lock->rin, ~MASK);
+#endif
+       lock->serving[0]++;
+}
+
+void ReadLock (RWLock *lock)
+{
+ushort w;
+#ifdef unix
+       w = __sync_fetch_and_add (lock->rin, RINC) & MASK;
+#else
+       w = _InterlockedExchangeAdd16 (lock->rin, RINC) & MASK;
+#endif
+       if( w )
+         while( w == (*lock->rin & MASK) )
+#ifdef unix
+               sched_yield ();
+#else
+               SwitchToThread ();
+#endif
+}
+
+void ReadRelease (RWLock *lock)
+{
+#ifdef unix
+       __sync_fetch_and_add (lock->rout, RINC);
+#else
+       _InterlockedExchangeAdd16 (lock->rout, RINC);
+#endif
+}
+
+//     Spin Latch Manager
+
+//     wait until write lock mode is clear
+//     and add 1 to the share count
+
+void bt_spinreadlock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, SHARE);
+#endif
+       //  see if exclusive request is granted or pending
+
+       if( !(prev & BOTH) )
+               return;
+#ifdef unix
+       prev = __sync_fetch_and_add ((ushort *)latch, -SHARE);
+#else
+       prev = _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     wait for other read and write latches to relinquish
+
+void bt_spinwritelock(BtSpinLatch *latch)
+{
+ushort prev;
+
+  do {
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, PEND | XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, PEND | XCL);
+#endif
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+#ifdef  unix
+  } while( sched_yield(), 1 );
+#else
+  } while( SwitchToThread(), 1 );
+#endif
+}
+
+//     try to obtain write lock
+
+//     return 1 if obtained,
+//             0 otherwise
+
+int bt_spinwritetry(BtSpinLatch *latch)
+{
+ushort prev;
+
+#ifdef  unix
+       prev = __sync_fetch_and_or((ushort *)latch, XCL);
+#else
+       prev = _InterlockedOr16((ushort *)latch, XCL);
+#endif
+       //      take write access if all bits are clear
+
+       if( !(prev & XCL) )
+         if( !(prev & ~BOTH) )
+               return 1;
+         else
+#ifdef unix
+               __sync_fetch_and_and ((ushort *)latch, ~XCL);
+#else
+               _InterlockedAnd16((ushort *)latch, ~XCL);
+#endif
+       return 0;
+}
+
+//     clear write mode
+
+void bt_spinreleasewrite(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_and((ushort *)latch, ~BOTH);
+#else
+       _InterlockedAnd16((ushort *)latch, ~BOTH);
+#endif
+}
+
+//     decrement reader count
+
+void bt_spinreleaseread(BtSpinLatch *latch)
+{
+#ifdef unix
+       __sync_fetch_and_add((ushort *)latch, -SHARE);
+#else
+       _InterlockedExchangeAdd16((ushort *)latch, -SHARE);
+#endif
+}
+
+//     link latch table entry into latch hash table
+
+void bt_latchlink (BtDb *bt, ushort hashidx, ushort victim, uid page_no)
+{
+BtLatchSet *set = bt->mgr->latchsets + victim;
+
+       if( set->next = bt->mgr->latchmgr->table[hashidx].slot )
+               bt->mgr->latchsets[set->next].prev = victim;
+
+       bt->mgr->latchmgr->table[hashidx].slot = victim;
+       set->page_no = page_no;
+       set->hash = hashidx;
+       set->prev = 0;
+}
+
+//     release latch pin
+
+void bt_unpinlatch (BtLatchSet *set)
+{
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, -1);
+#else
+       _InterlockedDecrement16 (&set->pin);
+#endif
+}
+
+//     find existing latchset or inspire new one
+//     return with latchset pinned
+
+BtLatchSet *bt_pinlatch (BtDb *bt, uid page_no)
+{
+ushort hashidx = page_no % bt->mgr->latchmgr->latchhash;
+ushort slot, avail = 0, victim, idx;
+BtLatchSet *set;
+
+       //  obtain read lock on hash table entry
+
+       bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+       {
+               set = bt->mgr->latchsets + slot;
+               if( page_no == set->page_no )
+                       break;
+       } while( slot = set->next );
+
+       if( slot ) {
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+       }
+
+    bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch);
+
+       if( slot )
+               return set;
+
+  //  try again, this time with write lock
+
+  bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch);
+
+  if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do
+  {
+       set = bt->mgr->latchsets + slot;
+       if( page_no == set->page_no )
+               break;
+       if( !set->pin && !avail )
+               avail = slot;
+  } while( slot = set->next );
+
+  //  found our entry, or take over an unpinned one
+
+  if( slot || (slot = avail) ) {
+       set = bt->mgr->latchsets + slot;
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       set->page_no = page_no;
+       bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch);
+       return set;
+  }
+
+       //  see if there are any unused entries
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, 1) + 1;
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+
+       if( victim < bt->mgr->latchmgr->latchtotal ) {
+               set = bt->mgr->latchsets + victim;
+#ifdef unix
+               __sync_fetch_and_add(&set->pin, 1);
+#else
+               _InterlockedIncrement16 (&set->pin);
+#endif
+               bt_latchlink (bt, hashidx, victim, page_no);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+               return set;
+       }
+
+#ifdef unix
+       victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, -1);
+#else
+       victim = _InterlockedDecrement16 (&bt->mgr->latchmgr->latchdeployed);
+#endif
+  //  find and reuse previous lock entry
+
+  while( 1 ) {
+#ifdef unix
+       victim = __sync_fetch_and_add(&bt->mgr->latchmgr->latchvictim, 1);
+#else
+       victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchvictim) - 1;
+#endif
+       //      we don't use slot zero
+
+       if( victim %= bt->mgr->latchmgr->latchtotal )
+               set = bt->mgr->latchsets + victim;
+       else
+               continue;
+
+       //      take control of our slot
+       //      from other threads
+
+       if( set->pin || !bt_spinwritetry (set->busy) )
+               continue;
+
+       idx = set->hash;
+
+       // try to get write lock on hash chain
+       //      skip entry if not obtained
+       //      or has outstanding locks
+
+       if( !bt_spinwritetry (bt->mgr->latchmgr->table[idx].latch) ) {
+               bt_spinreleasewrite (set->busy);
+               continue;
+       }
+
+       if( set->pin ) {
+               bt_spinreleasewrite (set->busy);
+               bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+               continue;
+       }
+
+       //  unlink our available victim from its hash chain
+
+       if( set->prev )
+               bt->mgr->latchsets[set->prev].next = set->next;
+       else
+               bt->mgr->latchmgr->table[idx].slot = set->next;
+
+       if( set->next )
+               bt->mgr->latchsets[set->next].prev = set->prev;
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch);
+#ifdef unix
+       __sync_fetch_and_add(&set->pin, 1);
+#else
+       _InterlockedIncrement16 (&set->pin);
+#endif
+       bt_latchlink (bt, hashidx, victim, page_no);
+       bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch);
+       bt_spinreleasewrite (set->busy);
+       return set;
+  }
+}
+
+void bt_mgrclose (BtMgr *mgr)
+{
+BtPool *pool;
+uint slot;
+
+       // release mapped pages
+       //      note that slot zero is never used
+
+       for( slot = 1; slot < mgr->poolmax; slot++ ) {
+               pool = mgr->pool + slot;
+               if( pool->slot )
+#ifdef unix
+                       munmap (pool->map, (uid)(mgr->poolmask+1) << mgr->page_bits);
+#else
+               {
+                       FlushViewOfFile(pool->map, 0);
+                       UnmapViewOfFile(pool->map);
+                       CloseHandle(pool->hmap);
+               }
+#endif
+       }
+
+#ifdef unix
+       munmap (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+       munmap (mgr->latchmgr, 2 * mgr->page_size);
+#else
+       FlushViewOfFile(mgr->latchmgr, 0);
+       UnmapViewOfFile(mgr->latchmgr);
+       CloseHandle(mgr->halloc);
+#endif
+#ifdef unix
+       close (mgr->idx);
+       free (mgr->pool);
+       free (mgr->hash);
+       free ((void *)mgr->latch);
+       free (mgr);
+#else
+       FlushFileBuffers(mgr->idx);
+       CloseHandle(mgr->idx);
+       GlobalFree (mgr->pool);
+       GlobalFree (mgr->hash);
+       GlobalFree ((void *)mgr->latch);
+       GlobalFree (mgr);
+#endif
+}
+
+//     close and release memory
+
+void bt_close (BtDb *bt)
+{
+#ifdef unix
+       if( bt->mem )
+               free (bt->mem);
+#else
+       if( bt->mem)
+               VirtualFree (bt->mem, 0, MEM_RELEASE);
+#endif
+       free (bt);
+}
+
+//  open/create new btree buffer manager
+
+//     call with file_name, BT_openmode, bits in page size (e.g. 16),
+//             size of mapped page pool (e.g. 8192)
+
+BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolmax, uint segsize, uint hashsize)
+{
+uint lvl, attr, cacheblk, last, slot, idx;
+uint nlatchpage, latchhash;
+unsigned char value[BtId];
+BtLatchMgr *latchmgr;
+off64_t size;
+uint amt[1];
+BtMgr* mgr;
+BtKey key;
+BtVal val;
+int flag;
+
+#ifndef unix
+SYSTEM_INFO sysinfo[1];
+#endif
+
+       // determine sanity of page size and buffer pool
+
+       if( bits > BT_maxbits )
+               bits = BT_maxbits;
+       else if( bits < BT_minbits )
+               bits = BT_minbits;
+
+       if( !poolmax )
+               return NULL;    // must have buffer pool
+
+#ifdef unix
+       mgr = calloc (1, sizeof(BtMgr));
+
+       mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666);
+
+       if( mgr->idx == -1 )
+               return free(mgr), NULL;
+       
+       cacheblk = 4096;        // minimum mmap segment size for unix
+
+#else
+       mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr));
+       attr = FILE_ATTRIBUTE_NORMAL;
+       mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL);
+
+       if( mgr->idx == INVALID_HANDLE_VALUE )
+               return GlobalFree(mgr), NULL;
+
+       // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity
+       GetSystemInfo(sysinfo);
+       cacheblk = sysinfo->dwAllocationGranularity;
+#endif
+
+#ifdef unix
+       latchmgr = malloc (BT_maxpage);
+       *amt = 0;
+
+       // read minimum page size to get root info
+
+       if( size = lseek (mgr->idx, 0L, 2) ) {
+               if( pread(mgr->idx, latchmgr, BT_minpage, 0) == BT_minpage )
+                       bits = latchmgr->alloc->bits;
+               else
+                       return free(mgr), free(latchmgr), NULL;
+       } else if( mode == BT_ro )
+               return free(latchmgr), bt_mgrclose (mgr), NULL;
+#else
+       latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE);
+       size = GetFileSize(mgr->idx, amt);
+
+       if( size || *amt ) {
+               if( !ReadFile(mgr->idx, (char *)latchmgr, BT_minpage, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               bits = latchmgr->alloc->bits;
+       } else if( mode == BT_ro )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       mgr->page_size = 1 << bits;
+       mgr->page_bits = bits;
+
+       mgr->poolmax = poolmax;
+       mgr->mode = mode;
+
+       if( cacheblk < mgr->page_size )
+               cacheblk = mgr->page_size;
+
+       //  mask for partial memmaps
+
+       mgr->poolmask = (cacheblk >> bits) - 1;
+
+       //      see if requested size of pages per memmap is greater
+
+       if( (1 << segsize) > mgr->poolmask )
+               mgr->poolmask = (1 << segsize) - 1;
+
+       mgr->seg_bits = 0;
+
+       while( (1 << mgr->seg_bits) <= mgr->poolmask )
+               mgr->seg_bits++;
+
+       mgr->hashsize = hashsize;
+
+#ifdef unix
+       mgr->pool = calloc (poolmax, sizeof(BtPool));
+       mgr->hash = calloc (hashsize, sizeof(ushort));
+       mgr->latch = calloc (hashsize, sizeof(BtSpinLatch));
+#else
+       mgr->pool = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, poolmax * sizeof(BtPool));
+       mgr->hash = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort));
+       mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtSpinLatch));
+#endif
+
+       if( size || *amt )
+               goto mgrlatch;
+
+       // initialize an empty b-tree with latch page, root page, page of leaves
+       // and page(s) of latches
+
+       memset (latchmgr, 0, 1 << bits);
+       nlatchpage = BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1; 
+       bt_putid(latchmgr->alloc->right, MIN_lvl+1+nlatchpage);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       latchmgr->nlatchpage = nlatchpage;
+       latchmgr->latchtotal = nlatchpage * (mgr->page_size / sizeof(BtLatchSet));
+
+       //  initialize latch manager
+
+       latchhash = (mgr->page_size - sizeof(BtLatchMgr)) / sizeof(BtHashEntry);
+
+       //      size of hash table = total number of latchsets
+
+       if( latchhash > latchmgr->latchtotal )
+               latchhash = latchmgr->latchtotal;
+
+       latchmgr->latchhash = latchhash;
+
+#ifdef unix
+       if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#else
+       if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+               return bt_mgrclose (mgr), NULL;
+
+       if( *amt < mgr->page_size )
+               return bt_mgrclose (mgr), NULL;
+#endif
+
+       memset (latchmgr, 0, 1 << bits);
+       latchmgr->alloc->bits = mgr->page_bits;
+
+       for( lvl=MIN_lvl; lvl--; ) {
+               slotptr(latchmgr->alloc, 1)->off = mgr->page_size - 3 - (lvl ? BtId + 1: 1);
+               key = keyptr(latchmgr->alloc, 1);
+               key->len = 2;           // create stopper key
+               key->key[0] = 0xff;
+               key->key[1] = 0xff;
+
+               bt_putid(value, MIN_lvl - lvl + 1);
+               val = valptr(latchmgr->alloc, 1);
+               val->len = lvl ? BtId : 0;
+               memcpy (val->value, value, val->len);
+
+               latchmgr->alloc->min = slotptr(latchmgr->alloc, 1)->off;
+               latchmgr->alloc->lvl = lvl;
+               latchmgr->alloc->cnt = 1;
+               latchmgr->alloc->act = 1;
+#ifdef unix
+               if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#else
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+       }
+
+       // clear out latch manager locks
+       //      and rest of pages to round out segment
+
+       memset(latchmgr, 0, mgr->page_size);
+       last = MIN_lvl + 1;
+
+       while( last <= ((MIN_lvl + 1 + nlatchpage) | mgr->poolmask) ) {
+#ifdef unix
+               pwrite(mgr->idx, latchmgr, mgr->page_size, last << mgr->page_bits);
+#else
+               SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN);
+               if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) )
+                       return bt_mgrclose (mgr), NULL;
+               if( *amt < mgr->page_size )
+                       return bt_mgrclose (mgr), NULL;
+#endif
+               last++;
+       }
+
+mgrlatch:
+#ifdef unix
+       // mlock the root page and the latchmgr page
+
+       flag = PROT_READ | PROT_WRITE;
+       mgr->latchmgr = mmap (0, 2 * mgr->page_size, flag, MAP_SHARED, mgr->idx, ALLOC_page * mgr->page_size);
+       if( mgr->latchmgr == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchmgr, 2 * mgr->page_size);
+
+       mgr->latchsets = (BtLatchSet *)mmap (0, mgr->latchmgr->nlatchpage * mgr->page_size, flag, MAP_SHARED, mgr->idx, LATCH_page * mgr->page_size);
+       if( mgr->latchsets == MAP_FAILED )
+               return bt_mgrclose (mgr), NULL;
+       mlock (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size);
+#else
+       flag = PAGE_READWRITE;
+       mgr->halloc = CreateFileMapping(mgr->idx, NULL, flag, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size, NULL);
+       if( !mgr->halloc )
+               return bt_mgrclose (mgr), NULL;
+
+       flag = FILE_MAP_WRITE;
+       mgr->latchmgr = MapViewOfFile(mgr->halloc, flag, 0, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size);
+       if( !mgr->latchmgr )
+               return GetLastError(), bt_mgrclose (mgr), NULL;
+
+       mgr->latchsets = (void *)((char *)mgr->latchmgr + LATCH_page * mgr->page_size);
+#endif
+
+#ifdef unix
+       free (latchmgr);
+#else
+       VirtualFree (latchmgr, 0, MEM_RELEASE);
+#endif
+       return mgr;
+}
+
+//     open BTree access method
+//     based on buffer manager
+
+BtDb *bt_open (BtMgr *mgr)
+{
+BtDb *bt = malloc (sizeof(*bt));
+
+       memset (bt, 0, sizeof(*bt));
+       bt->mgr = mgr;
+#ifdef unix
+       bt->mem = malloc (2 *mgr->page_size);
+#else
+       bt->mem = VirtualAlloc(NULL, 2 * mgr->page_size, MEM_COMMIT, PAGE_READWRITE);
+#endif
+       bt->frame = (BtPage)bt->mem;
+       bt->cursor = (BtPage)(bt->mem + 1 * mgr->page_size);
+       return bt;
+}
+
+//  compare two keys, returning > 0, = 0, or < 0
+//  as the comparison value
+
+int keycmp (BtKey key1, unsigned char *key2, uint len2)
+{
+uint len1 = key1->len;
+int ans;
+
+       if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) )
+               return ans;
+
+       if( len1 > len2 )
+               return 1;
+       if( len1 < len2 )
+               return -1;
+
+       return 0;
+}
+
+//     Buffer Pool mgr
+
+// find segment in pool
+// must be called with hashslot idx locked
+//     return NULL if not there
+//     otherwise return node
+
+BtPool *bt_findpool(BtDb *bt, uid page_no, uint idx)
+{
+BtPool *pool;
+uint slot;
+
+       // compute start of hash chain in pool
+
+       if( slot = bt->mgr->hash[idx] ) 
+               pool = bt->mgr->pool + slot;
+       else
+               return NULL;
+
+       page_no &= ~bt->mgr->poolmask;
+
+       while( pool->basepage != page_no )
+         if( pool = pool->hashnext )
+               continue;
+         else
+               return NULL;
+
+       return pool;
+}
+
+// add segment to hash table
+
+void bt_linkhash(BtDb *bt, BtPool *pool, uid page_no, int idx)
+{
+BtPool *node;
+uint slot;
+
+       pool->hashprev = pool->hashnext = NULL;
+       pool->basepage = page_no & ~bt->mgr->poolmask;
+       pool->pin = CLOCK_bit + 1;
+
+       if( slot = bt->mgr->hash[idx] ) {
+               node = bt->mgr->pool + slot;
+               pool->hashnext = node;
+               node->hashprev = pool;
+       }
+
+       bt->mgr->hash[idx] = pool->slot;
+}
+
+//  map new buffer pool segment to virtual memory
+
+BTERR bt_mapsegment(BtDb *bt, BtPool *pool, uid page_no)
+{
+off64_t off = (page_no & ~bt->mgr->poolmask) << bt->mgr->page_bits;
+off64_t limit = off + ((bt->mgr->poolmask+1) << bt->mgr->page_bits);
+int flag;
+
+#ifdef unix
+       flag = PROT_READ | ( bt->mgr->mode == BT_ro ? 0 : PROT_WRITE );
+       pool->map = mmap (0, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off);
+       if( pool->map == MAP_FAILED )
+               return bt->err = BTERR_map;
+
+#else
+       flag = ( bt->mgr->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE );
+       pool->hmap = CreateFileMapping(bt->mgr->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL);
+       if( !pool->hmap )
+               return bt->err = BTERR_map;
+
+       flag = ( bt->mgr->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE );
+       pool->map = MapViewOfFile(pool->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits);
+       if( !pool->map )
+               return bt->err = BTERR_map;
+#endif
+       return bt->err = 0;
+}
+
+//     calculate page within pool
+
+BtPage bt_page (BtDb *bt, BtPool *pool, uid page_no)
+{
+uint subpage = (uint)(page_no & bt->mgr->poolmask); // page within mapping
+BtPage page;
+
+       page = (BtPage)(pool->map + (subpage << bt->mgr->page_bits));
+//     madvise (page, bt->mgr->page_size, MADV_WILLNEED);
+       return page;
+}
+
+//  release pool pin
+
+void bt_unpinpool (BtPool *pool)
+{
+#ifdef unix
+       __sync_fetch_and_add(&pool->pin, -1);
+#else
+       _InterlockedDecrement16 (&pool->pin);
+#endif
+}
+
+//     find or place requested page in segment-pool
+//     return pool table entry, incrementing pin
+
+BtPool *bt_pinpool(BtDb *bt, uid page_no)
+{
+uint slot, hashidx, idx, victim;
+BtPool *pool, *node, *next;
+
+       //      lock hash table chain
+
+       hashidx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+       bt_spinwritelock (&bt->mgr->latch[hashidx]);
+
+       //      look up in hash table
+
+       if( pool = bt_findpool(bt, page_no, hashidx) ) {
+#ifdef unix
+               __sync_fetch_and_or(&pool->pin, CLOCK_bit);
+               __sync_fetch_and_add(&pool->pin, 1);
+#else
+               _InterlockedOr16 (&pool->pin, CLOCK_bit);
+               _InterlockedIncrement16 (&pool->pin);
+#endif
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // allocate a new pool node
+       // and add to hash table
+
+#ifdef unix
+       slot = __sync_fetch_and_add(&bt->mgr->poolcnt, 1);
+#else
+       slot = _InterlockedIncrement16 (&bt->mgr->poolcnt) - 1;
+#endif
+
+       if( ++slot < bt->mgr->poolmax ) {
+               pool = bt->mgr->pool + slot;
+               pool->slot = slot;
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+
+       // pool table is full
+       //      find best pool entry to evict
+
+#ifdef unix
+       __sync_fetch_and_add(&bt->mgr->poolcnt, -1);
+#else
+       _InterlockedDecrement16 (&bt->mgr->poolcnt);
+#endif
+
+       while( 1 ) {
+#ifdef unix
+               victim = __sync_fetch_and_add(&bt->mgr->evicted, 1);
+#else
+               victim = _InterlockedIncrement (&bt->mgr->evicted) - 1;
+#endif
+               victim %= bt->mgr->poolmax;
+               pool = bt->mgr->pool + victim;
+               idx = (uint)(pool->basepage >> bt->mgr->seg_bits) % bt->mgr->hashsize;
+
+               if( !victim )
+                       continue;
+
+               // try to get write lock
+               //      skip entry if not obtained
+
+               if( !bt_spinwritetry (&bt->mgr->latch[idx]) )
+                       continue;
+
+               //      skip this entry if
+               //      page is pinned
+               //  or clock bit is set
+
+               if( pool->pin ) {
+#ifdef unix
+                       __sync_fetch_and_and(&pool->pin, ~CLOCK_bit);
+#else
+                       _InterlockedAnd16 (&pool->pin, ~CLOCK_bit);
+#endif
+                       bt_spinreleasewrite (&bt->mgr->latch[idx]);
+                       continue;
+               }
+
+               // unlink victim pool node from hash table
+
+               if( node = pool->hashprev )
+                       node->hashnext = pool->hashnext;
+               else if( node = pool->hashnext )
+                       bt->mgr->hash[idx] = node->slot;
+               else
+                       bt->mgr->hash[idx] = 0;
+
+               if( node = pool->hashnext )
+                       node->hashprev = pool->hashprev;
+
+               bt_spinreleasewrite (&bt->mgr->latch[idx]);
+
+               //      remove old file mapping
+#ifdef unix
+               munmap (pool->map, (uid)(bt->mgr->poolmask+1) << bt->mgr->page_bits);
+#else
+//             FlushViewOfFile(pool->map, 0);
+               UnmapViewOfFile(pool->map);
+               CloseHandle(pool->hmap);
+#endif
+               pool->map = NULL;
+
+               //  create new pool mapping
+               //  and link into hash table
+
+               if( bt_mapsegment(bt, pool, page_no) )
+                       return NULL;
+
+               bt_linkhash(bt, pool, page_no, hashidx);
+               bt_spinreleasewrite (&bt->mgr->latch[hashidx]);
+               return pool;
+       }
+}
+
+// place write, read, or parent lock on requested page_no.
+
+void bt_lockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadLock (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteLock (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadLock (set->access);
+               break;
+       case BtLockDelete:
+               WriteLock (set->access);
+               break;
+       case BtLockParent:
+               WriteLock (set->parent);
+               break;
+       }
+}
+
+// remove write, read, or parent lock on requested page
+
+void bt_unlockpage(BtLock mode, BtLatchSet *set)
+{
+       switch( mode ) {
+       case BtLockRead:
+               ReadRelease (set->readwr);
+               break;
+       case BtLockWrite:
+               WriteRelease (set->readwr);
+               break;
+       case BtLockAccess:
+               ReadRelease (set->access);
+               break;
+       case BtLockDelete:
+               WriteRelease (set->access);
+               break;
+       case BtLockParent:
+               WriteRelease (set->parent);
+               break;
+       }
+}
+
+//     allocate a new page and write page into it
+
+uid bt_newpage(BtDb *bt, BtPage page)
+{
+BtPageSet set[1];
+uid new_page;
+int blk;
+
+       //      lock allocation page
+
+       bt_spinwritelock(bt->mgr->latchmgr->lock);
+
+       // use empty chain first
+       // else allocate empty page
+
+       if( new_page = bt_getid(bt->mgr->latchmgr->chain) ) {
+               if( set->pool = bt_pinpool (bt, new_page) )
+                       set->page = bt_page (bt, set->pool, new_page);
+               else
+                       return 0;
+
+               bt_putid(bt->mgr->latchmgr->chain, bt_getid(set->page->right));
+               bt_unpinpool (set->pool);
+       } else {
+               new_page = bt_getid(bt->mgr->latchmgr->alloc->right);
+               bt_putid(bt->mgr->latchmgr->alloc->right, new_page+1);
+#ifdef unix
+               // if writing first page of pool block, set file length thru last page
+
+               if( (new_page & bt->mgr->poolmask) == 0 )
+                       ftruncate (bt->mgr->idx, (new_page + bt->mgr->poolmask + 1) << bt->mgr->page_bits);
+#endif
+       }
+#ifdef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+
+       //      bring new page into pool and copy page.
+       //      this will extend the file into the new pages on WIN32.
+
+       if( set->pool = bt_pinpool (bt, new_page) )
+               set->page = bt_page (bt, set->pool, new_page);
+       else
+               return 0;
+
+       memcpy(set->page, page, bt->mgr->page_size);
+       bt_unpinpool (set->pool);
+
+#ifndef unix
+       // unlock allocation latch
+
+       bt_spinreleasewrite(bt->mgr->latchmgr->lock);
+#endif
+       return new_page;
+}
+
+//  find slot in page for given key at a given level
+
+int bt_findslot (BtPageSet *set, unsigned char *key, uint len)
+{
+uint diff, higher = set->page->cnt, low = 1, slot;
+uint good = 0;
+
+       //        make stopper key an infinite fence value
+
+       if( bt_getid (set->page->right) )
+               higher++;
+       else
+               good++;
+
+       //      low is the lowest candidate.
+       //  loop ends when they meet
+
+       //  higher is already
+       //      tested as .ge. the passed key.
+
+       while( diff = higher - low ) {
+               slot = low + ( diff >> 1 );
+               if( keycmp (keyptr(set->page, slot), key, len) < 0 )
+                       low = slot + 1;
+               else
+                       higher = slot, good++;
+       }
+
+       //      return zero if key is on right link page
+
+       return good ? higher : 0;
+}
+
+//  find and load page at given level for given key
+//     leave page rd or wr locked as requested
+
+int bt_loadpage (BtDb *bt, BtPageSet *set, unsigned char *key, uint len, uint lvl, BtLock lock)
+{
+uid page_no = ROOT_page, prevpage = 0;
+uint drill = 0xff, slot;
+BtLatchSet *prevlatch;
+uint mode, prevmode;
+BtPool *prevpool;
+
+  //  start at root of btree and drill down
+
+  do {
+       // determine lock mode of drill level
+       mode = (drill == lvl) ? lock : BtLockRead; 
+
+       set->latch = bt_pinlatch (bt, page_no);
+       set->page_no = page_no;
+
+       // pin page contents
+
+       if( set->pool = bt_pinpool (bt, page_no) )
+               set->page = bt_page (bt, set->pool, page_no);
+       else
+               return 0;
+
+       // obtain access lock using lock chaining with Access mode
+
+       if( page_no > ROOT_page )
+         bt_lockpage(BtLockAccess, set->latch);
+
+       //      release & unpin parent page
+
+       if( prevpage ) {
+         bt_unlockpage(prevmode, prevlatch);
+         bt_unpinlatch (prevlatch);
+         bt_unpinpool (prevpool);
+         prevpage = 0;
+       }
+
+       // obtain read lock using lock chaining
+
+       bt_lockpage(mode, set->latch);
+
+       if( set->page->free )
+               return bt->err = BTERR_struct, 0;
+
+       if( page_no > ROOT_page )
+         bt_unlockpage(BtLockAccess, set->latch);
+
+       // re-read and re-lock root after determining actual level of root
+
+       if( set->page->lvl != drill) {
+               if( set->page_no != ROOT_page )
+                       return bt->err = BTERR_struct, 0;
+                       
+               drill = set->page->lvl;
+
+               if( lock != BtLockRead && drill == lvl ) {
+                 bt_unlockpage(mode, set->latch);
+                 bt_unpinlatch (set->latch);
+                 bt_unpinpool (set->pool);
+                 continue;
+               }
+       }
+
+       prevpage = set->page_no;
+       prevlatch = set->latch;
+       prevpool = set->pool;
+       prevmode = mode;
+
+       //  find key on page at this level
+       //  and descend to requested level
+
+       if( !set->page->kill )
+        if( slot = bt_findslot (set, key, len) ) {
+         if( drill == lvl )
+               return slot;
+
+         while( slotptr(set->page, slot)->dead )
+               if( slot++ < set->page->cnt )
+                       continue;
+               else
+                       goto slideright;
+
+         page_no = bt_getid(valptr(set->page, slot)->value);
+         drill--;
+         continue;
+        }
+
+       //  or slide right into next page
+
+slideright:
+       page_no = bt_getid(set->page->right);
+
+  } while( page_no );
+
+  // return error on end of right chain
+
+  bt->err = BTERR_struct;
+  return 0;    // return error
+}
+
+//     return page to free list
+//     page must be delete & write locked
+
+void bt_freepage (BtDb *bt, BtPageSet *set)
+{
+       //      lock allocation page
+
+       bt_spinwritelock (bt->mgr->latchmgr->lock);
+
+       //      store chain
+       memcpy(set->page->right, bt->mgr->latchmgr->chain, BtId);
+       bt_putid(bt->mgr->latchmgr->chain, set->page_no);
+       set->page->free = 1;
+
+       // unlock released page
+
+       bt_unlockpage (BtLockDelete, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       // unlock allocation page
+
+       bt_spinreleasewrite (bt->mgr->latchmgr->lock);
+}
+
+//     a fence key was deleted from a page
+//     push new fence value upwards
+
+BTERR bt_fixfence (BtDb *bt, BtPageSet *set, uint lvl)
+{
+unsigned char leftkey[256], rightkey[256];
+unsigned char value[BtId];
+uid page_no;
+BtKey ptr;
+BtVal val;
+
+       //      remove the old fence value
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (rightkey, ptr, ptr->len + 1);
+       set->page->garbage += ptr->len + val->len + 2;
+       memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot));
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (leftkey, ptr, ptr->len + 1);
+       page_no = set->page_no;
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       //      insert new (now smaller) fence key
+
+       bt_putid (value, page_no);
+
+       if( bt_insertkey (bt, leftkey+1, *leftkey, lvl+1, value, BtId) )
+         return bt->err;
+
+       //      now delete old fence key
+
+       if( bt_deletekey (bt, rightkey+1, *rightkey, lvl+1) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch(set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+//     root has a single child
+//     collapse a level from the tree
+
+BTERR bt_collapseroot (BtDb *bt, BtPageSet *root)
+{
+BtPageSet child[1];
+uint idx;
+
+  // find the child entry and promote as new root contents
+
+  do {
+       for( idx = 0; idx++ < root->page->cnt; )
+         if( !slotptr(root->page, idx)->dead )
+               break;
+
+       child->page_no = bt_getid (valptr(root->page, idx)->value);
+
+       child->latch = bt_pinlatch (bt, child->page_no);
+       bt_lockpage (BtLockDelete, child->latch);
+       bt_lockpage (BtLockWrite, child->latch);
+
+       if( child->pool = bt_pinpool (bt, child->page_no) )
+               child->page = bt_page (bt, child->pool, child->page_no);
+       else
+               return bt->err;
+
+       memcpy (root->page, child->page, bt->mgr->page_size);
+       bt_freepage (bt, child);
+
+  } while( root->page->lvl > 1 && root->page->act == 1 );
+
+  bt_unlockpage (BtLockWrite, root->latch);
+  bt_unpinlatch (root->latch);
+  bt_unpinpool (root->pool);
+  return 0;
+}
+
+//  find and delete key on page by marking delete flag bit
+//  if page becomes empty, delete it from the btree
+
+BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl)
+{
+unsigned char lowerfence[256], higherfence[256];
+uint slot, idx, dirty = 0, fence, found;
+BtPageSet set[1], right[1];
+unsigned char value[BtId];
+BtKey ptr, tst;
+BtVal val;
+
+       if( slot = bt_loadpage (bt, set, key, len, lvl, BtLockWrite) )
+               ptr = keyptr(set->page, slot);
+       else
+               return bt->err;
+
+       // if librarian slot, advance to real slot
+
+       if( slotptr(set->page, slot)->librarian )
+               ptr = keyptr(set->page, ++slot);
+
+       //      are we deleting a fence slot?
+
+       fence = slot == set->page->cnt;
+
+       // if key is found delete it, otherwise ignore request
+
+       if( found = !keycmp (ptr, key, len) )
+         if( found = slotptr(set->page, slot)->dead == 0 ) {
+               val = valptr(set->page,slot);
+               dirty = slotptr(set->page, slot)->dead = 1;
+               set->page->garbage += ptr->len + val->len + 2;
+               set->page->act--;
+
+               // collapse empty slots
+
+               while( idx = set->page->cnt - 1 )
+                 if( slotptr(set->page, idx)->dead ) {
+                       *slotptr(set->page, idx) = *slotptr(set->page, idx + 1);
+                       memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot));
+                 } else
+                       break;
+         }
+
+       //      did we delete a fence key in an upper level?
+
+       if( dirty && lvl && set->page->act && fence )
+         if( bt_fixfence (bt, set, lvl) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      is this a collapsed root?
+
+       if( lvl > 1 && set->page_no == ROOT_page && set->page->act == 1 )
+         if( bt_collapseroot (bt, set) )
+               return bt->err;
+         else
+               return bt->found = found, 0;
+
+       //      return if page is not empty
+
+       if( set->page->act ) {
+               bt_unlockpage(BtLockWrite, set->latch);
+               bt_unpinlatch (set->latch);
+               bt_unpinpool (set->pool);
+               return bt->found = found, 0;
+       }
+
+       //      cache copy of fence key
+       //      to post in parent
+
+       ptr = keyptr(set->page, set->page->cnt);
+       memcpy (lowerfence, ptr, ptr->len + 1);
+
+       //      obtain lock on right page
+
+       right->page_no = bt_getid(set->page->right);
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockWrite, right->latch);
+
+       // pin page contents
+
+       if( right->pool = bt_pinpool (bt, right->page_no) )
+               right->page = bt_page (bt, right->pool, right->page_no);
+       else
+               return 0;
+
+       if( right->page->kill )
+               return bt->err = BTERR_struct;
+
+       // pull contents of right peer into our empty page
+
+       memcpy (set->page, right->page, bt->mgr->page_size);
+
+       // cache copy of key to update
+
+       ptr = keyptr(right->page, right->page->cnt);
+       memcpy (higherfence, ptr, ptr->len + 1);
+
+       // mark right page deleted and point it to left page
+       //      until we can post parent updates
+
+       bt_putid (right->page->right, set->page_no);
+       right->page->kill = 1;
+
+       bt_lockpage (BtLockParent, right->latch);
+       bt_unlockpage (BtLockWrite, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // redirect higher key directly to our new node contents
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, higherfence+1, *higherfence, lvl+1, value, BtId) )
+         return bt->err;
+
+       //      delete old lower key to our node
+
+       if( bt_deletekey (bt, lowerfence+1, *lowerfence, lvl+1) )
+         return bt->err;
+
+       //      obtain delete and write locks to right node
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_lockpage (BtLockDelete, right->latch);
+       bt_lockpage (BtLockWrite, right->latch);
+       bt_freepage (bt, right);
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       bt->found = found;
+       return 0;
+}
+
+//     find key in leaf level and return number of value bytes
+//     or (-1) if not found
+
+int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax)
+{
+BtPageSet set[1];
+uint  slot;
+BtKey ptr;
+BtVal val;
+int ret;
+
+       if( slot = bt_loadpage (bt, set, key, keylen, 0, BtLockRead) )
+               ptr = keyptr(set->page, slot);
+       else
+               return 0;
+
+       //      skip librarian slot place holder
+
+       if( slotptr(set->page, slot)->librarian )
+               ptr = keyptr(set->page, ++slot);
+
+       // if key exists, return >= 0 value bytes copied
+       //      otherwise return (-1)
+
+       if( !slotptr(set->page, slot)->dead && !keycmp (ptr, key, keylen) ) {
+               val = valptr (set->page,slot);
+               if( valmax > val->len )
+                       valmax = val->len;
+               memcpy (value, val->value, valmax);
+               ret = valmax;
+       } else
+               ret = -1;
+
+       bt_unlockpage (BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return ret;
+}
+
+//     check page for space available,
+//     clean if necessary and return
+//     0 - page needs splitting
+//     >0  new slot value
+
+uint bt_cleanpage(BtDb *bt, BtPage page, uint keylen, uint slot, uint vallen)
+{
+uint nxt = bt->mgr->page_size;
+uint cnt = 0, idx = 0;
+uint max = page->cnt;
+uint newslot = max;
+BtKey key;
+BtVal val;
+
+       if( page->min >= (max+1) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1)
+               return slot;
+
+       //      skip cleanup and proceed to split
+       //      if there's not enough garbage
+
+       if( page->garbage + page->min < 2 * page->act * sizeof(BtSlot) + sizeof(*page) + nxt / 3 )
+               return 0;
+
+       memcpy (bt->frame, page, bt->mgr->page_size);
+
+       // skip page info and set rest of page to zero
+
+       memset (page+1, 0, bt->mgr->page_size - sizeof(*page));
+       page->garbage = 0;
+       page->act = 0;
+
+       // clean up page first by
+       // removing deleted keys
+
+       while( cnt++ < max ) {
+               if( cnt == slot )
+                       newslot = idx + 2;
+               if( cnt < max && slotptr(bt->frame,cnt)->dead )
+                       continue;
+
+               // copy the key across
+
+               key = keyptr(bt->frame, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)page + nxt, key, key->len + 1);
+
+               // copy the value across
+
+               val = valptr(bt->frame, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)page)[nxt] = val->len;
+               memcpy ((unsigned char *)page + nxt + 1, val->value, val->len);
+
+               // make a librarian slot
+
+               slotptr(page, ++idx)->off = nxt;
+               slotptr(page, idx)->librarian = 1;
+               slotptr(page, idx)->dead = 1;
+
+               // set up the slot
+
+               slotptr(page, ++idx)->off = nxt;
+
+               if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) )
+                       page->act++;
+       }
+
+       page->min = nxt;
+       page->cnt = idx;
+
+       //      see if page has enough space now, or does it need splitting?
+
+       if( page->min >= (idx+1) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1 )
+               return newslot;
+
+       return 0;
+}
+
+// split the root and raise the height of the btree
+
+BTERR bt_splitroot(BtDb *bt, BtPageSet *root, unsigned char *leftkey, uid page_no2)
+{
+uint nxt = bt->mgr->page_size;
+unsigned char value[BtId];
+uid left;
+
+       //  Obtain an empty page to use, and copy the current
+       //  root contents into it, e.g. lower keys
+
+       if( !(left = bt_newpage(bt, root->page)) )
+               return bt->err;
+
+       // preserve the page info at the bottom
+       // of higher keys and set rest to zero
+
+       memset(root->page+1, 0, bt->mgr->page_size - sizeof(*root->page));
+
+       // insert lower keys page fence key on newroot page as first key
+
+       nxt -= BtId + 1;
+       bt_putid (value, left);
+       ((unsigned char *)root->page)[nxt] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 1, value, BtId);
+
+       nxt -= *leftkey + 1;
+       memcpy ((unsigned char *)root->page + nxt, leftkey, *leftkey + 1);
+       slotptr(root->page, 1)->off = nxt;
+       
+       // insert stopper key on newroot page
+       // and increase the root height
+
+       nxt -= 3 + BtId + 1;
+       ((unsigned char *)root->page)[nxt] = 2;
+       ((unsigned char *)root->page)[nxt+1] = 0xff;
+       ((unsigned char *)root->page)[nxt+2] = 0xff;
+
+       bt_putid (value, page_no2);
+       ((unsigned char *)root->page)[nxt+3] = BtId;
+       memcpy ((unsigned char *)root->page + nxt + 4, value, BtId);
+       slotptr(root->page, 2)->off = nxt;
+
+       bt_putid(root->page->right, 0);
+       root->page->min = nxt;          // reset lowest used offset and key count
+       root->page->cnt = 2;
+       root->page->act = 2;
+       root->page->lvl++;
+
+       // release and unpin root
+
+       bt_unlockpage(BtLockWrite, root->latch);
+       bt_unpinlatch (root->latch);
+       bt_unpinpool (root->pool);
+       return 0;
+}
+
+//  split already locked full node
+//     return unlocked.
+
+BTERR bt_splitpage (BtDb *bt, BtPageSet *set)
+{
+uint cnt = 0, idx = 0, max, nxt = bt->mgr->page_size;
+unsigned char fencekey[256], rightkey[256];
+unsigned char value[BtId];
+uint lvl = set->page->lvl;
+BtPageSet right[1];
+uint prev;
+BtKey key;
+BtVal val;
+
+       //  split higher half of keys to bt->frame
+
+       memset (bt->frame, 0, bt->mgr->page_size);
+       max = set->page->cnt;
+       cnt = max / 2;
+       idx = 0;
+
+       while( cnt++ < max ) {
+               if( slotptr(set->page, cnt)->dead && cnt < max )
+                       continue;
+               val = valptr(set->page, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)bt->frame)[nxt] = val->len;
+               memcpy ((unsigned char *)bt->frame + nxt + 1, val->value, val->len);
+
+               key = keyptr(set->page, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)bt->frame + nxt, key, key->len + 1);
+
+               //      add librarian slot
+
+               slotptr(bt->frame, ++idx)->off = nxt;
+               slotptr(bt->frame, idx)->librarian = 1;
+               slotptr(bt->frame, idx)->dead = 1;
+
+               //  add actual slot
+
+               slotptr(bt->frame, ++idx)->off = nxt;
+
+               if( !(slotptr(bt->frame, idx)->dead = slotptr(set->page, cnt)->dead) )
+                       bt->frame->act++;
+       }
+
+       // remember existing fence key for new page to the right
+
+       memcpy (rightkey, key, key->len + 1);
+
+       bt->frame->bits = bt->mgr->page_bits;
+       bt->frame->min = nxt;
+       bt->frame->cnt = idx;
+       bt->frame->lvl = lvl;
+
+       // link right node
+
+       if( set->page_no > ROOT_page )
+               memcpy (bt->frame->right, set->page->right, BtId);
+
+       //      get new free page and write higher keys to it.
+
+       if( !(right->page_no = bt_newpage(bt, bt->frame)) )
+               return bt->err;
+
+       //      update lower keys to continue in old page
+
+       memcpy (bt->frame, set->page, bt->mgr->page_size);
+       memset (set->page+1, 0, bt->mgr->page_size - sizeof(*set->page));
+       nxt = bt->mgr->page_size;
+       set->page->garbage = 0;
+       set->page->act = 0;
+       max /= 2;
+       cnt = 0;
+       idx = 0;
+
+       if( slotptr(bt->frame, max)->librarian )
+               max--;
+
+       //  assemble page of smaller keys
+
+       while( cnt++ < max ) {
+               if( slotptr(bt->frame, cnt)->dead )
+                       continue;
+               val = valptr(bt->frame, cnt);
+               nxt -= val->len + 1;
+               ((unsigned char *)set->page)[nxt] = val->len;
+               memcpy ((unsigned char *)set->page + nxt + 1, val->value, val->len);
+
+               key = keyptr(bt->frame, cnt);
+               nxt -= key->len + 1;
+               memcpy ((unsigned char *)set->page + nxt, key, key->len + 1);
+
+               //      add librarian slot
+
+               slotptr(set->page, ++idx)->off = nxt;
+               slotptr(set->page, idx)->librarian = 1;
+               slotptr(set->page, idx)->dead = 1;
+
+               //      add actual slot
+
+               slotptr(set->page, ++idx)->off = nxt;
+               set->page->act++;
+       }
+
+       // remember fence key for smaller page
+
+       memcpy(fencekey, key, key->len + 1);
+
+       bt_putid(set->page->right, right->page_no);
+       set->page->min = nxt;
+       set->page->cnt = idx;
+
+       // if current page is the root page, split it
+
+       if( set->page_no == ROOT_page )
+               return bt_splitroot (bt, set, fencekey, right->page_no);
+
+       // insert new fences in their parent pages
+
+       right->latch = bt_pinlatch (bt, right->page_no);
+       bt_lockpage (BtLockParent, right->latch);
+
+       bt_lockpage (BtLockParent, set->latch);
+       bt_unlockpage (BtLockWrite, set->latch);
+
+       // insert new fence for reformulated left block of smaller keys
+
+       bt_putid (value, set->page_no);
+
+       if( bt_insertkey (bt, fencekey+1, *fencekey, lvl+1, value, BtId) )
+               return bt->err;
+
+       // switch fence for right block of larger keys to new right page
+
+       bt_putid (value, right->page_no);
+
+       if( bt_insertkey (bt, rightkey+1, *rightkey, lvl+1, value, BtId) )
+               return bt->err;
+
+       bt_unlockpage (BtLockParent, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+
+       bt_unlockpage (BtLockParent, right->latch);
+       bt_unpinlatch (right->latch);
+       return 0;
+}
+//  Insert new key into the btree at given level.
+
+BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint keylen, uint lvl, void *value, uint vallen)
+{
+BtPageSet set[1];
+uint slot, idx;
+uint reuse;
+BtKey ptr;
+BtKey tst;
+BtVal val;
+
+       while( 1 ) {
+               if( slot = bt_loadpage (bt, set, key, keylen, lvl, BtLockWrite) )
+                       ptr = keyptr(set->page, slot);
+               else {
+                       if( !bt->err )
+                               bt->err = BTERR_ovflw;
+                       return bt->err;
+               }
+
+               // if librarian slot == found slot, advance to real slot
+
+               if( slotptr(set->page, slot)->librarian )
+                 if( !keycmp (ptr, key, keylen) )
+                       ptr = keyptr(set->page, ++slot);
+
+               // if key already exists, update value and return
+
+               if( reuse = !keycmp (ptr, key, keylen) )
+                 if( val = valptr(set->page, slot), val->len >= vallen ) {
+                       if( slotptr(set->page, slot)->dead )
+                               set->page->act++;
+                       set->page->garbage += val->len - vallen;
+                       slotptr(set->page, slot)->dead = 0;
+                       val->len = vallen;
+                       memcpy (val->value, value, vallen);
+                       bt_unlockpage(BtLockWrite, set->latch);
+                       bt_unpinlatch (set->latch);
+                       bt_unpinpool (set->pool);
+                       return 0;
+                 } else {
+                       if( !slotptr(set->page, slot)->dead ) {
+                               set->page->garbage += val->len + ptr->len + 2;
+                               set->page->act--;
+                       }
+                       slotptr(set->page, slot)->dead = 1;
+                 }
+
+               //      if found slot > desired slot and previous slot
+               //      is a librarian slot, use it
+
+               if( !reuse && slot > 1 )
+                 if( slotptr(set->page, slot-1)->librarian )
+                       slot--;
+
+               // check if page has enough space
+
+               if( slot = bt_cleanpage (bt, set->page, keylen, slot, vallen) )
+                       break;
+
+               if( bt_splitpage (bt, set) )
+                       return bt->err;
+       }
+
+       // calculate next available slot and copy key into page
+
+       set->page->min -= vallen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = vallen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, value, vallen );
+
+       set->page->min -= keylen + 1; // reset lowest used offset
+       ((unsigned char *)set->page)[set->page->min] = keylen;
+       memcpy ((unsigned char *)set->page + set->page->min +1, key, keylen );
+
+       for( idx = slot; idx < set->page->cnt; idx++ )
+         if( slotptr(set->page, idx)->dead )
+               break;
+
+       // now insert key into array before slot
+
+       if( !reuse && idx == set->page->cnt )
+               idx++, set->page->cnt++;
+
+       set->page->act++;
+
+       while( idx > slot )
+               *slotptr(set->page, idx) = *slotptr(set->page, idx -1), idx--;
+
+       slotptr(set->page, slot)->off = set->page->min;
+       slotptr(set->page, slot)->librarian = 0;
+       slotptr(set->page, slot)->dead = 0;
+
+       bt_unlockpage (BtLockWrite, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return 0;
+}
+
+//  cache page of keys into cursor and return starting slot for given key
+
+uint bt_startkey (BtDb *bt, unsigned char *key, uint len)
+{
+BtPageSet set[1];
+uint slot;
+
+       // cache page for retrieval
+
+       if( slot = bt_loadpage (bt, set, key, len, 0, BtLockRead) )
+         memcpy (bt->cursor, set->page, bt->mgr->page_size);
+       else
+         return 0;
+
+       bt->cursor_page = set->page_no;
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       return slot;
+}
+
+//  return next slot for cursor page
+//  or slide cursor right into next page
+
+uint bt_nextkey (BtDb *bt, uint slot)
+{
+BtPageSet set[1];
+uid right;
+
+  do {
+       right = bt_getid(bt->cursor->right);
+
+       while( slot++ < bt->cursor->cnt )
+         if( slotptr(bt->cursor,slot)->dead )
+               continue;
+         else if( right || (slot < bt->cursor->cnt) ) // skip infinite stopper
+               return slot;
+         else
+               break;
+
+       if( !right )
+               break;
+
+       bt->cursor_page = right;
+
+       if( set->pool = bt_pinpool (bt, right) )
+               set->page = bt_page (bt, set->pool, right);
+       else
+               return 0;
+
+       set->latch = bt_pinlatch (bt, right);
+    bt_lockpage(BtLockRead, set->latch);
+
+       memcpy (bt->cursor, set->page, bt->mgr->page_size);
+
+       bt_unlockpage(BtLockRead, set->latch);
+       bt_unpinlatch (set->latch);
+       bt_unpinpool (set->pool);
+       slot = 0;
+
+  } while( 1 );
+
+  return bt->err = 0;
+}
+
+BtKey bt_key(BtDb *bt, uint slot)
+{
+       return keyptr(bt->cursor, slot);
+}
+
+BtVal bt_val(BtDb *bt, uint slot)
+{
+       return valptr(bt->cursor,slot);
+}
+
+#ifdef STANDALONE
+
+#ifndef unix
+double getCpuTime(int type)
+{
+FILETIME crtime[1];
+FILETIME xittime[1];
+FILETIME systime[1];
+FILETIME usrtime[1];
+SYSTEMTIME timeconv[1];
+double ans = 0;
+
+       memset (timeconv, 0, sizeof(SYSTEMTIME));
+
+       switch( type ) {
+       case 0:
+               GetSystemTimeAsFileTime (xittime);
+               FileTimeToSystemTime (xittime, timeconv);
+               ans = (double)timeconv->wDayOfWeek * 3600 * 24;
+               break;
+       case 1:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (usrtime, timeconv);
+               break;
+       case 2:
+               GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime);
+               FileTimeToSystemTime (systime, timeconv);
+               break;
+       }
+
+       ans += (double)timeconv->wHour * 3600;
+       ans += (double)timeconv->wMinute * 60;
+       ans += (double)timeconv->wSecond;
+       ans += (double)timeconv->wMilliseconds / 1000;
+       return ans;
+}
+#else
+#include <time.h>
+#include <sys/resource.h>
+
+double getCpuTime(int type)
+{
+struct rusage used[1];
+struct timeval tv[1];
+
+       switch( type ) {
+       case 0:
+               gettimeofday(tv, NULL);
+               return (double)tv->tv_sec + (double)tv->tv_usec / 1000000;
+
+       case 1:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000;
+
+       case 2:
+               getrusage(RUSAGE_SELF, used);
+               return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000;
+       }
+
+       return 0;
+}
+#endif
+
+uint bt_latchaudit (BtDb *bt)
+{
+ushort idx, hashidx;
+uid next, page_no;
+BtLatchSet *latch;
+uint cnt = 0;
+BtKey ptr;
+
+#ifdef unix
+       posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+       if( *(ushort *)(bt->mgr->latchmgr->lock) )
+               fprintf(stderr, "Alloc page locked\n");
+       *(ushort *)(bt->mgr->latchmgr->lock) = 0;
+
+       for( idx = 1; idx <= bt->mgr->latchmgr->latchdeployed; idx++ ) {
+               latch = bt->mgr->latchsets + idx;
+               if( *latch->readwr->rin & MASK )
+                       fprintf(stderr, "latchset %d rwlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->readwr, 0, sizeof(RWLock));
+
+               if( *latch->access->rin & MASK )
+                       fprintf(stderr, "latchset %d accesslocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->access, 0, sizeof(RWLock));
+
+               if( *latch->parent->rin & MASK )
+                       fprintf(stderr, "latchset %d parentlocked for page %.8x\n", idx, latch->page_no);
+               memset ((ushort *)latch->parent, 0, sizeof(RWLock));
+
+               if( latch->pin ) {
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+                       latch->pin = 0;
+               }
+       }
+
+       for( hashidx = 0; hashidx < bt->mgr->latchmgr->latchhash; hashidx++ ) {
+         if( *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) )
+                       fprintf(stderr, "hash entry %d locked\n", hashidx);
+
+         *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) = 0;
+
+         if( idx = bt->mgr->latchmgr->table[hashidx].slot ) do {
+               latch = bt->mgr->latchsets + idx;
+               if( *(ushort *)latch->busy )
+                       fprintf(stderr, "latchset %d busylocked for page %.8x\n", idx, latch->page_no);
+               *(ushort *)latch->busy = 0;
+               if( latch->pin )
+                       fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no);
+         } while( idx = latch->next );
+       }
+
+       next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+       page_no = LEAF_page;
+
+       while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+       off64_t off = page_no << bt->mgr->page_bits;
+#ifdef unix
+               pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+
+                 if( *amt <  bt->mgr->page_size )
+                       fprintf(stderr, "page %.8x unable to read\n", page_no);
+#endif
+               if( !bt->frame->free ) {
+                for( idx = 0; idx++ < bt->frame->cnt - 1; ) {
+                 ptr = keyptr(bt->frame, idx+1);
+                 if( keycmp (keyptr(bt->frame, idx), ptr->key, ptr->len) >= 0 )
+                       fprintf(stderr, "page %.8x idx %.2x out of order\n", page_no, idx);
+                }
+                if( !bt->frame->lvl )
+                       cnt += bt->frame->act;
+               }
+               if( page_no > LEAF_page )
+                       next = page_no + 1;
+               page_no = next;
+       }
+       return cnt - 1;
+}
+
+typedef struct {
+       char idx;
+       char *type;
+       char *infile;
+       BtMgr *mgr;
+       int num;
+} ThreadArg;
+
+//  standalone program to index file of keys
+//  then list them onto std-out
+
+#ifdef unix
+void *index_file (void *arg)
+#else
+uint __stdcall index_file (void *arg)
+#endif
+{
+int line = 0, found = 0, cnt = 0;
+uid next, page_no = LEAF_page; // start on first page of leaves
+unsigned char key[256];
+ThreadArg *args = arg;
+int ch, len = 0, slot;
+BtPageSet set[1];
+BtKey ptr;
+BtDb *bt;
+FILE *in;
+
+       bt = bt_open (args->mgr);
+
+       switch(args->type[0] | 0x20)
+       {
+       case 'a':
+               fprintf(stderr, "started latch mgr audit\n");
+               cnt = bt_latchaudit (bt);
+               fprintf(stderr, "finished latch mgr audit, found %d keys\n", cnt);
+               break;
+
+       case 'p':
+               fprintf(stderr, "started pennysort for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( bt_insertkey (bt, key, 10, 0, key + 10, len - 10) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'w':
+               fprintf(stderr, "started indexing for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_insertkey (bt, key, len, 0, NULL, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys\n", args->infile, line);
+               break;
+
+       case 'd':
+               fprintf(stderr, "started deleting keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_deletekey (bt, key, len, 0) )
+                               fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for keys, %d \n", args->infile, line);
+               break;
+
+       case 'f':
+               fprintf(stderr, "started finding keys for %s\n", args->infile);
+               if( in = fopen (args->infile, "rb") )
+                 while( ch = getc(in), ch != EOF )
+                       if( ch == '\n' )
+                       {
+                         line++;
+                         if( args->num == 1 )
+                               sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9;
+
+                         else if( args->num )
+                               sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9;
+
+                         if( bt_findkey (bt, key, len, NULL, 0) == 0 )
+                               found++;
+                         else if( bt->err )
+                               fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0);
+                         len = 0;
+                       }
+                       else if( len < 255 )
+                               key[len++] = ch;
+               fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found);
+               break;
+
+       case 's':
+               fprintf(stderr, "started scanning\n");
+               do {
+                       if( set->pool = bt_pinpool (bt, page_no) )
+                               set->page = bt_page (bt, set->pool, page_no);
+                       else
+                               break;
+                       set->latch = bt_pinlatch (bt, page_no);
+                       bt_lockpage (BtLockRead, set->latch);
+                       next = bt_getid (set->page->right);
+                       cnt += set->page->act;
+
+                       for( slot = 0; slot++ < set->page->cnt; )
+                        if( next || slot < set->page->cnt )
+                         if( !slotptr(set->page, slot)->dead ) {
+                               ptr = keyptr(set->page, slot);
+                               fwrite (ptr->key, ptr->len, 1, stdout);
+                               fputc ('\n', stdout);
+                         }
+
+                       bt_unlockpage (BtLockRead, set->latch);
+                       bt_unpinlatch (set->latch);
+                       bt_unpinpool (set->pool);
+               } while( page_no = next );
+
+               cnt--;  // remove stopper key
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+
+       case 'c':
+#ifdef unix
+               posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL);
+#endif
+               fprintf(stderr, "started counting\n");
+               next = bt->mgr->latchmgr->nlatchpage + LATCH_page;
+               page_no = LEAF_page;
+
+               while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) {
+               uid off = page_no << bt->mgr->page_bits;
+#ifdef unix
+                 pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off);
+#else
+               DWORD amt[1];
+
+                 SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN);
+
+                 if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL))
+                       return bt->err = BTERR_map;
+
+                 if( *amt <  bt->mgr->page_size )
+                       return bt->err = BTERR_map;
+#endif
+                       if( !bt->frame->free && !bt->frame->lvl )
+                               cnt += bt->frame->act;
+                       if( page_no > LEAF_page )
+                               next = page_no + 1;
+                       page_no = next;
+               }
+               
+               cnt--;  // remove stopper key
+               fprintf(stderr, " Total keys read %d\n", cnt);
+               break;
+       }
+
+       bt_close (bt);
+#ifdef unix
+       return NULL;
+#else
+       return 0;
+#endif
+}
+
+typedef struct timeval timer;
+
+int main (int argc, char **argv)
+{
+int idx, cnt, len, slot, err;
+int segsize, bits = 16;
+double start, stop;
+#ifdef unix
+pthread_t *threads;
+#else
+HANDLE *threads;
+#endif
+ThreadArg *args;
+uint poolsize = 0;
+float elapsed;
+int num = 0;
+char key[1];
+BtMgr *mgr;
+BtKey ptr;
+BtDb *bt;
+
+       if( argc < 3 ) {
+               fprintf (stderr, "Usage: %s idx_file Read/Write/Scan/Delete/Find [page_bits mapped_segments seg_bits line_numbers src_file1 src_file2 ... ]\n", argv[0]);
+               fprintf (stderr, "  where page_bits is the page size in bits\n");
+               fprintf (stderr, "  mapped_segments is the number of mmap segments in buffer pool\n");
+               fprintf (stderr, "  seg_bits is the size of individual segments in buffer pool in pages in bits\n");
+               fprintf (stderr, "  line_numbers = 1 to append line numbers to keys\n");
+               fprintf (stderr, "  src_file1 thru src_filen are files of keys separated by newline\n");
+               exit(0);
+       }
+
+       start = getCpuTime(0);
+
+       if( argc > 3 )
+               bits = atoi(argv[3]);
+
+       if( argc > 4 )
+               poolsize = atoi(argv[4]);
+
+       if( !poolsize )
+               fprintf (stderr, "Warning: no mapped_pool\n");
+
+       if( poolsize > 65535 )
+               fprintf (stderr, "Warning: mapped_pool > 65535 segments\n");
+
+       if( argc > 5 )
+               segsize = atoi(argv[5]);
+       else
+               segsize = 4;    // 16 pages per mmap segment
+
+       if( argc > 6 )
+               num = atoi(argv[6]);
+
+       cnt = argc - 7;
+#ifdef unix
+       threads = malloc (cnt * sizeof(pthread_t));
+#else
+       threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE));
+#endif
+       args = malloc (cnt * sizeof(ThreadArg));
+
+       mgr = bt_mgr ((argv[1]), BT_rw, bits, poolsize, segsize, poolsize / 8);
+
+       if( !mgr ) {
+               fprintf(stderr, "Index Open Error %s\n", argv[1]);
+               exit (1);
+       }
+
+       //      fire off threads
+
+       for( idx = 0; idx < cnt; idx++ ) {
+               args[idx].infile = argv[idx + 7];
+               args[idx].type = argv[2];
+               args[idx].mgr = mgr;
+               args[idx].num = num;
+               args[idx].idx = idx;
+#ifdef unix
+               if( err = pthread_create (threads + idx, NULL, index_file, args + idx) )
+                       fprintf(stderr, "Error creating thread %d\n", err);
+#else
+               threads[idx] = (HANDLE)_beginthreadex(NULL, 65536, index_file, args + idx, 0, NULL);
+#endif
+       }
+
+       //      wait for termination
+
+#ifdef unix
+       for( idx = 0; idx < cnt; idx++ )
+               pthread_join (threads[idx], NULL);
+#else
+       WaitForMultipleObjects (cnt, threads, TRUE, INFINITE);
+
+       for( idx = 0; idx < cnt; idx++ )
+               CloseHandle(threads[idx]);
+
+#endif
+       elapsed = getCpuTime(0) - start;
+       fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(1);
+       fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+       elapsed = getCpuTime(2);
+       fprintf(stderr, " sys  %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60);
+
+       bt_mgrclose (mgr);
+}
+
+#endif //STANDALONE