From 433c48a8b08c7140d6b103fba147635054d31281 Mon Sep 17 00:00:00 2001 From: unknown Date: Mon, 18 Aug 2014 14:58:06 -0700 Subject: [PATCH] Initial release of generalized key/value version --- threadskv1.c | 2659 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2659 insertions(+) create mode 100644 threadskv1.c diff --git a/threadskv1.c b/threadskv1.c new file mode 100644 index 0000000..57111ac --- /dev/null +++ b/threadskv1.c @@ -0,0 +1,2659 @@ +// btree version threadskv1 sched_yield version +// with reworked bt_deletekey code +// and phase-fair reader writer lock +// 12 MAR 2014 + +// author: karl malbrain, malbrain@cal.berkeley.edu + +/* +This work, including the source code, documentation +and related data, is placed into the public domain. + +The orginal author is Karl Malbrain. + +THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY +OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF +MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE, +ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE +RESULTING FROM THE USE, MODIFICATION, OR +REDISTRIBUTION OF THIS SOFTWARE. +*/ + +// Please see the project home page for documentation +// code.google.com/p/high-concurrency-btree + +#define _FILE_OFFSET_BITS 64 +#define _LARGEFILE64_SOURCE + +#ifdef linux +#define _GNU_SOURCE +#endif + +#ifdef unix +#include +#include +#include +#include +#include +#include +#include +#include +#else +#define WIN32_LEAN_AND_MEAN +#include +#include +#include +#include +#include +#include +#include +#endif + +#include +#include +#include + +typedef unsigned long long uid; + +#ifndef unix +typedef unsigned long long off64_t; +typedef unsigned short ushort; +typedef unsigned int uint; +#endif + +#define BT_latchtable 128 // number of latch manager slots + +#define BT_ro 0x6f72 // ro +#define BT_rw 0x7772 // rw + +#define BT_maxbits 24 // maximum page size in bits +#define BT_minbits 9 // minimum page size in bits +#define BT_minpage (1 << BT_minbits) // minimum page size +#define BT_maxpage (1 << BT_maxbits) // maximum page size + +/* +There are five lock types for each node in three independent sets: +1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. +2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. +3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. +4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. +5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. +*/ + +typedef enum{ + BtLockAccess, + BtLockDelete, + BtLockRead, + BtLockWrite, + BtLockParent +} BtLock; + +// definition for phase-fair reader/writer lock implementation + +typedef struct { + ushort rin[1]; + ushort rout[1]; + ushort ticket[1]; + ushort serving[1]; +} RWLock; + +#define PHID 0x1 +#define PRES 0x2 +#define MASK 0x3 +#define RINC 0x4 + +// definition for spin latch implementation + +// exclusive is set for write access +// share is count of read accessors +// grant write lock when share == 0 + +volatile typedef struct { + ushort exclusive:1; + ushort pending:1; + ushort share:14; +} BtSpinLatch; + +#define XCL 1 +#define PEND 2 +#define BOTH 3 +#define SHARE 4 + +// hash table entries + +typedef struct { + BtSpinLatch latch[1]; + volatile ushort slot; // Latch table entry at head of chain +} BtHashEntry; + +// latch manager table structure + +typedef struct { + RWLock readwr[1]; // read/write page lock + RWLock access[1]; // Access Intent/Page delete + RWLock parent[1]; // Posting of fence key in parent + BtSpinLatch busy[1]; // slot is being moved between chains + volatile ushort next; // next entry in hash table chain + volatile ushort prev; // prev entry in hash table chain + volatile ushort pin; // number of outstanding locks + volatile ushort hash; // hash slot entry is under + volatile uid page_no; // latch set page number +} BtLatchSet; + +// Define the length of the page and key pointers + +#define BtId 6 + +// Page key slot definition. + +// If BT_maxbits is 15 or less, you can save 2 bytes +// for each key stored by making the two uints +// into ushorts. + +// Keys are marked dead, but remain on the page until +// it cleanup is called. The fence key (highest key) for +// the page is always present, even after cleanup. + +typedef struct { + uint off:BT_maxbits; // page offset for key start + uint dead:1; // set for deleted key +} BtSlot; + +// The key structure occupies space at the upper end of +// each page. It's a length byte followed by the key +// bytes. + +typedef struct { + unsigned char len; + unsigned char key[1]; +} *BtKey; + +// the value structure also occupies space at the upper +// end of the page. + +typedef struct { + unsigned char len; + unsigned char value[1]; +} *BtVal; + +// The first part of an index page. +// It is immediately followed +// by the BtSlot array of keys. + +typedef struct BtPage_ { + uint cnt; // count of keys in page + uint act; // count of active keys + uint min; // next key offset + unsigned char bits:7; // page size in bits + unsigned char free:1; // page is on free chain + unsigned char lvl:6; // level of page + unsigned char kill:1; // page is being deleted + unsigned char dirty:1; // page has deleted keys + unsigned char right[BtId]; // page number to right +} *BtPage; + +// The memory mapping pool table buffer manager entry + +typedef struct { + uid basepage; // mapped base page number + char *map; // mapped memory pointer + ushort slot; // slot index in this array + ushort pin; // mapped page pin counter + void *hashprev; // previous pool entry for the same hash idx + void *hashnext; // next pool entry for the same hash idx +#ifndef unix + HANDLE hmap; // Windows memory mapping handle +#endif +} BtPool; + +#define CLOCK_bit 0x8000 // bit in pool->pin + +// The loadpage interface object + +typedef struct { + uid page_no; // current page number + BtPage page; // current page pointer + BtPool *pool; // current page pool + BtLatchSet *latch; // current page latch set +} BtPageSet; + +// structure for latch manager on ALLOC_page + +typedef struct { + struct BtPage_ alloc[1]; // next page_no in right ptr + unsigned char chain[BtId]; // head of free page_nos chain + BtSpinLatch lock[1]; // allocation area lite latch + ushort latchdeployed; // highest number of latch entries deployed + ushort nlatchpage; // number of latch pages at BT_latch + ushort latchtotal; // number of page latch entries + ushort latchhash; // number of latch hash table slots + ushort latchvictim; // next latch entry to examine + BtHashEntry table[0]; // the hash table +} BtLatchMgr; + +// The object structure for Btree access + +typedef struct { + uint page_size; // page size + uint page_bits; // page size in bits + uint seg_bits; // seg size in pages in bits + uint mode; // read-write mode +#ifdef unix + int idx; +#else + HANDLE idx; +#endif + ushort poolcnt; // highest page pool node in use + ushort poolmax; // highest page pool node allocated + ushort poolmask; // total number of pages in mmap segment - 1 + ushort hashsize; // size of Hash Table for pool entries + volatile uint evicted; // last evicted hash table slot + ushort *hash; // pool index for hash entries + BtSpinLatch *latch; // latches for hash table slots + BtLatchMgr *latchmgr; // mapped latch page from allocation page + BtLatchSet *latchsets; // mapped latch set from latch pages + BtPool *pool; // memory pool page segments +#ifndef unix + HANDLE halloc; // allocation and latch table handle +#endif +} BtMgr; + +typedef struct { + BtMgr *mgr; // buffer manager for thread + BtPage cursor; // cached frame for start/next (never mapped) + BtPage frame; // spare frame for the page split (never mapped) + uid cursor_page; // current cursor page number + unsigned char *mem; // frame, cursor, page memory buffer + int found; // last delete or insert was found + int err; // last error +} BtDb; + +typedef enum { + BTERR_ok = 0, + BTERR_struct, + BTERR_ovflw, + BTERR_lock, + BTERR_map, + BTERR_wrt, + BTERR_hash +} BTERR; + +// B-Tree functions +extern void bt_close (BtDb *bt); +extern BtDb *bt_open (BtMgr *mgr); +extern BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint len, uint lvl, unsigned char *value, uint vallen); +extern BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl); +extern int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint vallen); +extern uint bt_startkey (BtDb *bt, unsigned char *key, uint len); +extern uint bt_nextkey (BtDb *bt, uint slot); + +// manager functions +extern BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolsize, uint segsize, uint hashsize); +void bt_mgrclose (BtMgr *mgr); + +// Helper functions to return slot values + +extern BtKey bt_key (BtDb *bt, uint slot); +extern BtVal bt_val (BtDb *bt, uint slot); + +// BTree page number constants +#define ALLOC_page 0 // allocation & lock manager hash table +#define ROOT_page 1 // root of the btree +#define LEAF_page 2 // first page of leaves +#define LATCH_page 3 // pages for lock manager + +// Number of levels to create in a new BTree + +#define MIN_lvl 2 + +// The page is allocated from low and hi ends. +// The key slots are allocated from the bottom, +// while the text and value of the key +// is allocated from the top. When the two +// areas meet, the page is split into two. + +// A key consists of a length byte, two bytes of +// index number (0 - 65534), and up to 253 bytes +// of key value. Duplicate keys are discarded. +// Associated with each key is a value byte string +// containing any value desired. + +// The b-tree root is always located at page 1. +// The first leaf page of level zero is always +// located on page 2. + +// The b-tree pages are linked with next +// pointers to facilitate enumerators, +// and provide for concurrency. + +// When to root page fills, it is split in two and +// the tree height is raised by a new root at page +// one with two keys. + +// Deleted keys are marked with a dead bit until +// page cleanup. The fence key for a leaf node is +// always present + +// Groups of pages called segments from the btree are optionally +// cached with a memory mapped pool. A hash table is used to keep +// track of the cached segments. This behaviour is controlled +// by the cache block size parameter to bt_open. + +// To achieve maximum concurrency one page is locked at a time +// as the tree is traversed to find leaf key in question. The right +// page numbers are used in cases where the page is being split, +// or consolidated. + +// Page 0 is dedicated to lock for new page extensions, +// and chains empty pages together for reuse. It also +// contains the latch manager hash table. + +// The ParentModification lock on a node is obtained to serialize posting +// or changing the fence key for a node. + +// Empty pages are chained together through the ALLOC page and reused. + +// Access macros to address slot and key values from the page +// Page slots use 1 based indexing. + +#define slotptr(page, slot) (((BtSlot *)(page+1)) + (slot-1)) +#define keyptr(page, slot) ((BtKey)((unsigned char*)(page) + slotptr(page, slot)->off)) +#define valptr(page, slot) ((BtVal)(keyptr(page,slot)->key + keyptr(page,slot)->len)) + +void bt_putid(unsigned char *dest, uid id) +{ +int i = BtId; + + while( i-- ) + dest[i] = (unsigned char)id, id >>= 8; +} + +uid bt_getid(unsigned char *src) +{ +uid id = 0; +int i; + + for( i = 0; i < BtId; i++ ) + id <<= 8, id |= *src++; + + return id; +} + +// Phase-Fair reader/writer lock implementation + +void WriteLock (RWLock *lock) +{ +ushort w, r, tix; + +#ifdef unix + tix = __sync_fetch_and_add (lock->ticket, 1); +#else + tix = _InterlockedExchangeAdd16 (lock->ticket, 1); +#endif + // wait for our ticket to come up + + while( tix != lock->serving[0] ) +#ifdef unix + sched_yield(); +#else + SwitchToThread (); +#endif + + w = PRES | (tix & PHID); +#ifdef unix + r = __sync_fetch_and_add (lock->rin, w); +#else + r = _InterlockedExchangeAdd16 (lock->rin, w); +#endif + while( r != *lock->rout ) +#ifdef unix + sched_yield(); +#else + SwitchToThread(); +#endif +} + +void WriteRelease (RWLock *lock) +{ +#ifdef unix + __sync_fetch_and_and (lock->rin, ~MASK); +#else + _InterlockedAnd16 (lock->rin, ~MASK); +#endif + lock->serving[0]++; +} + +void ReadLock (RWLock *lock) +{ +ushort w; +#ifdef unix + w = __sync_fetch_and_add (lock->rin, RINC) & MASK; +#else + w = _InterlockedExchangeAdd16 (lock->rin, RINC) & MASK; +#endif + if( w ) + while( w == (*lock->rin & MASK) ) +#ifdef unix + sched_yield (); +#else + SwitchToThread (); +#endif +} + +void ReadRelease (RWLock *lock) +{ +#ifdef unix + __sync_fetch_and_add (lock->rout, RINC); +#else + _InterlockedExchangeAdd16 (lock->rout, RINC); +#endif +} + +// Spin Latch Manager + +// wait until write lock mode is clear +// and add 1 to the share count + +void bt_spinreadlock(BtSpinLatch *latch) +{ +ushort prev; + + do { +#ifdef unix + prev = __sync_fetch_and_add ((ushort *)latch, SHARE); +#else + prev = _InterlockedExchangeAdd16((ushort *)latch, SHARE); +#endif + // see if exclusive request is granted or pending + + if( !(prev & BOTH) ) + return; +#ifdef unix + prev = __sync_fetch_and_add ((ushort *)latch, -SHARE); +#else + prev = _InterlockedExchangeAdd16((ushort *)latch, -SHARE); +#endif +#ifdef unix + } while( sched_yield(), 1 ); +#else + } while( SwitchToThread(), 1 ); +#endif +} + +// wait for other read and write latches to relinquish + +void bt_spinwritelock(BtSpinLatch *latch) +{ +ushort prev; + + do { +#ifdef unix + prev = __sync_fetch_and_or((ushort *)latch, PEND | XCL); +#else + prev = _InterlockedOr16((ushort *)latch, PEND | XCL); +#endif + if( !(prev & XCL) ) + if( !(prev & ~BOTH) ) + return; + else +#ifdef unix + __sync_fetch_and_and ((ushort *)latch, ~XCL); +#else + _InterlockedAnd16((ushort *)latch, ~XCL); +#endif +#ifdef unix + } while( sched_yield(), 1 ); +#else + } while( SwitchToThread(), 1 ); +#endif +} + +// try to obtain write lock + +// return 1 if obtained, +// 0 otherwise + +int bt_spinwritetry(BtSpinLatch *latch) +{ +ushort prev; + +#ifdef unix + prev = __sync_fetch_and_or((ushort *)latch, XCL); +#else + prev = _InterlockedOr16((ushort *)latch, XCL); +#endif + // take write access if all bits are clear + + if( !(prev & XCL) ) + if( !(prev & ~BOTH) ) + return 1; + else +#ifdef unix + __sync_fetch_and_and ((ushort *)latch, ~XCL); +#else + _InterlockedAnd16((ushort *)latch, ~XCL); +#endif + return 0; +} + +// clear write mode + +void bt_spinreleasewrite(BtSpinLatch *latch) +{ +#ifdef unix + __sync_fetch_and_and((ushort *)latch, ~BOTH); +#else + _InterlockedAnd16((ushort *)latch, ~BOTH); +#endif +} + +// decrement reader count + +void bt_spinreleaseread(BtSpinLatch *latch) +{ +#ifdef unix + __sync_fetch_and_add((ushort *)latch, -SHARE); +#else + _InterlockedExchangeAdd16((ushort *)latch, -SHARE); +#endif +} + +// link latch table entry into latch hash table + +void bt_latchlink (BtDb *bt, ushort hashidx, ushort victim, uid page_no) +{ +BtLatchSet *set = bt->mgr->latchsets + victim; + + if( set->next = bt->mgr->latchmgr->table[hashidx].slot ) + bt->mgr->latchsets[set->next].prev = victim; + + bt->mgr->latchmgr->table[hashidx].slot = victim; + set->page_no = page_no; + set->hash = hashidx; + set->prev = 0; +} + +// release latch pin + +void bt_unpinlatch (BtLatchSet *set) +{ +#ifdef unix + __sync_fetch_and_add(&set->pin, -1); +#else + _InterlockedDecrement16 (&set->pin); +#endif +} + +// find existing latchset or inspire new one +// return with latchset pinned + +BtLatchSet *bt_pinlatch (BtDb *bt, uid page_no) +{ +ushort hashidx = page_no % bt->mgr->latchmgr->latchhash; +ushort slot, avail = 0, victim, idx; +BtLatchSet *set; + + // obtain read lock on hash table entry + + bt_spinreadlock(bt->mgr->latchmgr->table[hashidx].latch); + + if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do + { + set = bt->mgr->latchsets + slot; + if( page_no == set->page_no ) + break; + } while( slot = set->next ); + + if( slot ) { +#ifdef unix + __sync_fetch_and_add(&set->pin, 1); +#else + _InterlockedIncrement16 (&set->pin); +#endif + } + + bt_spinreleaseread (bt->mgr->latchmgr->table[hashidx].latch); + + if( slot ) + return set; + + // try again, this time with write lock + + bt_spinwritelock(bt->mgr->latchmgr->table[hashidx].latch); + + if( slot = bt->mgr->latchmgr->table[hashidx].slot ) do + { + set = bt->mgr->latchsets + slot; + if( page_no == set->page_no ) + break; + if( !set->pin && !avail ) + avail = slot; + } while( slot = set->next ); + + // found our entry, or take over an unpinned one + + if( slot || (slot = avail) ) { + set = bt->mgr->latchsets + slot; +#ifdef unix + __sync_fetch_and_add(&set->pin, 1); +#else + _InterlockedIncrement16 (&set->pin); +#endif + set->page_no = page_no; + bt_spinreleasewrite(bt->mgr->latchmgr->table[hashidx].latch); + return set; + } + + // see if there are any unused entries +#ifdef unix + victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, 1) + 1; +#else + victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchdeployed); +#endif + + if( victim < bt->mgr->latchmgr->latchtotal ) { + set = bt->mgr->latchsets + victim; +#ifdef unix + __sync_fetch_and_add(&set->pin, 1); +#else + _InterlockedIncrement16 (&set->pin); +#endif + bt_latchlink (bt, hashidx, victim, page_no); + bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch); + return set; + } + +#ifdef unix + victim = __sync_fetch_and_add (&bt->mgr->latchmgr->latchdeployed, -1); +#else + victim = _InterlockedDecrement16 (&bt->mgr->latchmgr->latchdeployed); +#endif + // find and reuse previous lock entry + + while( 1 ) { +#ifdef unix + victim = __sync_fetch_and_add(&bt->mgr->latchmgr->latchvictim, 1); +#else + victim = _InterlockedIncrement16 (&bt->mgr->latchmgr->latchvictim) - 1; +#endif + // we don't use slot zero + + if( victim %= bt->mgr->latchmgr->latchtotal ) + set = bt->mgr->latchsets + victim; + else + continue; + + // take control of our slot + // from other threads + + if( set->pin || !bt_spinwritetry (set->busy) ) + continue; + + idx = set->hash; + + // try to get write lock on hash chain + // skip entry if not obtained + // or has outstanding locks + + if( !bt_spinwritetry (bt->mgr->latchmgr->table[idx].latch) ) { + bt_spinreleasewrite (set->busy); + continue; + } + + if( set->pin ) { + bt_spinreleasewrite (set->busy); + bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch); + continue; + } + + // unlink our available victim from its hash chain + + if( set->prev ) + bt->mgr->latchsets[set->prev].next = set->next; + else + bt->mgr->latchmgr->table[idx].slot = set->next; + + if( set->next ) + bt->mgr->latchsets[set->next].prev = set->prev; + + bt_spinreleasewrite (bt->mgr->latchmgr->table[idx].latch); +#ifdef unix + __sync_fetch_and_add(&set->pin, 1); +#else + _InterlockedIncrement16 (&set->pin); +#endif + bt_latchlink (bt, hashidx, victim, page_no); + bt_spinreleasewrite (bt->mgr->latchmgr->table[hashidx].latch); + bt_spinreleasewrite (set->busy); + return set; + } +} + +void bt_mgrclose (BtMgr *mgr) +{ +BtPool *pool; +uint slot; + + // release mapped pages + // note that slot zero is never used + + for( slot = 1; slot < mgr->poolmax; slot++ ) { + pool = mgr->pool + slot; + if( pool->slot ) +#ifdef unix + munmap (pool->map, (mgr->poolmask+1) << mgr->page_bits); +#else + { + FlushViewOfFile(pool->map, 0); + UnmapViewOfFile(pool->map); + CloseHandle(pool->hmap); + } +#endif + } + +#ifdef unix + munmap (mgr->latchsets, mgr->latchmgr->nlatchpage * mgr->page_size); + munmap (mgr->latchmgr, mgr->page_size); +#else + FlushViewOfFile(mgr->latchmgr, 0); + UnmapViewOfFile(mgr->latchmgr); + CloseHandle(mgr->halloc); +#endif +#ifdef unix + close (mgr->idx); + free (mgr->pool); + free (mgr->hash); + free ((void *)mgr->latch); + free (mgr); +#else + FlushFileBuffers(mgr->idx); + CloseHandle(mgr->idx); + GlobalFree (mgr->pool); + GlobalFree (mgr->hash); + GlobalFree ((void *)mgr->latch); + GlobalFree (mgr); +#endif +} + +// close and release memory + +void bt_close (BtDb *bt) +{ +#ifdef unix + if( bt->mem ) + free (bt->mem); +#else + if( bt->mem) + VirtualFree (bt->mem, 0, MEM_RELEASE); +#endif + free (bt); +} + +// open/create new btree buffer manager + +// call with file_name, BT_openmode, bits in page size (e.g. 16), +// size of mapped page pool (e.g. 8192) + +BtMgr *bt_mgr (char *name, uint mode, uint bits, uint poolmax, uint segsize, uint hashsize) +{ +uint lvl, attr, cacheblk, last, slot, idx; +uint nlatchpage, latchhash; +unsigned char value[BtId]; +BtLatchMgr *latchmgr; +off64_t size; +uint amt[1]; +BtMgr* mgr; +BtKey key; +BtVal val; +int flag; + +#ifndef unix +SYSTEM_INFO sysinfo[1]; +#endif + + // determine sanity of page size and buffer pool + + if( bits > BT_maxbits ) + bits = BT_maxbits; + else if( bits < BT_minbits ) + bits = BT_minbits; + + if( !poolmax ) + return NULL; // must have buffer pool + +#ifdef unix + mgr = calloc (1, sizeof(BtMgr)); + + mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); + + if( mgr->idx == -1 ) + return free(mgr), NULL; + + cacheblk = 4096; // minimum mmap segment size for unix + +#else + mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr)); + attr = FILE_ATTRIBUTE_NORMAL; + mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL); + + if( mgr->idx == INVALID_HANDLE_VALUE ) + return GlobalFree(mgr), NULL; + + // normalize cacheblk to multiple of sysinfo->dwAllocationGranularity + GetSystemInfo(sysinfo); + cacheblk = sysinfo->dwAllocationGranularity; +#endif + +#ifdef unix + latchmgr = malloc (BT_maxpage); + *amt = 0; + + // read minimum page size to get root info + + if( size = lseek (mgr->idx, 0L, 2) ) { + if( pread(mgr->idx, latchmgr, BT_minpage, 0) == BT_minpage ) + bits = latchmgr->alloc->bits; + else + return free(mgr), free(latchmgr), NULL; + } else if( mode == BT_ro ) + return free(latchmgr), bt_mgrclose (mgr), NULL; +#else + latchmgr = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE); + size = GetFileSize(mgr->idx, amt); + + if( size || *amt ) { + if( !ReadFile(mgr->idx, (char *)latchmgr, BT_minpage, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + bits = latchmgr->alloc->bits; + } else if( mode == BT_ro ) + return bt_mgrclose (mgr), NULL; +#endif + + mgr->page_size = 1 << bits; + mgr->page_bits = bits; + + mgr->poolmax = poolmax; + mgr->mode = mode; + + if( cacheblk < mgr->page_size ) + cacheblk = mgr->page_size; + + // mask for partial memmaps + + mgr->poolmask = (cacheblk >> bits) - 1; + + // see if requested size of pages per memmap is greater + + if( (1 << segsize) > mgr->poolmask ) + mgr->poolmask = (1 << segsize) - 1; + + mgr->seg_bits = 0; + + while( (1 << mgr->seg_bits) <= mgr->poolmask ) + mgr->seg_bits++; + + mgr->hashsize = hashsize; + +#ifdef unix + mgr->pool = calloc (poolmax, sizeof(BtPool)); + mgr->hash = calloc (hashsize, sizeof(ushort)); + mgr->latch = calloc (hashsize, sizeof(BtSpinLatch)); +#else + mgr->pool = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, poolmax * sizeof(BtPool)); + mgr->hash = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(ushort)); + mgr->latch = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, hashsize * sizeof(BtSpinLatch)); +#endif + + if( size || *amt ) + goto mgrlatch; + + // initialize an empty b-tree with latch page, root page, page of leaves + // and page(s) of latches + + memset (latchmgr, 0, 1 << bits); + nlatchpage = BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1; + bt_putid(latchmgr->alloc->right, MIN_lvl+1+nlatchpage); + latchmgr->alloc->bits = mgr->page_bits; + + latchmgr->nlatchpage = nlatchpage; + latchmgr->latchtotal = nlatchpage * (mgr->page_size / sizeof(BtLatchSet)); + + // initialize latch manager + + latchhash = (mgr->page_size - sizeof(BtLatchMgr)) / sizeof(BtHashEntry); + + // size of hash table = total number of latchsets + + if( latchhash > latchmgr->latchtotal ) + latchhash = latchmgr->latchtotal; + + latchmgr->latchhash = latchhash; + +#ifdef unix + if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#else + if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + + if( *amt < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#endif + + memset (latchmgr, 0, 1 << bits); + latchmgr->alloc->bits = mgr->page_bits; + + for( lvl=MIN_lvl; lvl--; ) { + slotptr(latchmgr->alloc, 1)->off = mgr->page_size - 3 - (lvl ? BtId + 1: 1); + key = keyptr(latchmgr->alloc, 1); + key->len = 2; // create stopper key + key->key[0] = 0xff; + key->key[1] = 0xff; + + bt_putid(value, MIN_lvl - lvl + 1); + val = valptr(latchmgr->alloc, 1); + val->len = lvl ? BtId : 0; + memcpy (val->value, value, val->len); + + latchmgr->alloc->min = slotptr(latchmgr->alloc, 1)->off; + latchmgr->alloc->lvl = lvl; + latchmgr->alloc->cnt = 1; + latchmgr->alloc->act = 1; +#ifdef unix + if( write (mgr->idx, latchmgr, mgr->page_size) < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#else + if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + + if( *amt < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#endif + } + + // clear out latch manager locks + // and rest of pages to round out segment + + memset(latchmgr, 0, mgr->page_size); + last = MIN_lvl + 1; + + while( last <= ((MIN_lvl + 1 + nlatchpage) | mgr->poolmask) ) { +#ifdef unix + pwrite(mgr->idx, latchmgr, mgr->page_size, last << mgr->page_bits); +#else + SetFilePointer (mgr->idx, last << mgr->page_bits, NULL, FILE_BEGIN); + if( !WriteFile (mgr->idx, (char *)latchmgr, mgr->page_size, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + if( *amt < mgr->page_size ) + return bt_mgrclose (mgr), NULL; +#endif + last++; + } + +mgrlatch: +#ifdef unix + flag = PROT_READ | PROT_WRITE; + mgr->latchmgr = mmap (0, mgr->page_size, flag, MAP_SHARED, mgr->idx, ALLOC_page * mgr->page_size); + if( mgr->latchmgr == MAP_FAILED ) + return bt_mgrclose (mgr), NULL; + mgr->latchsets = (BtLatchSet *)mmap (0, mgr->latchmgr->nlatchpage * mgr->page_size, flag, MAP_SHARED, mgr->idx, LATCH_page * mgr->page_size); + if( mgr->latchsets == MAP_FAILED ) + return bt_mgrclose (mgr), NULL; +#else + flag = PAGE_READWRITE; + mgr->halloc = CreateFileMapping(mgr->idx, NULL, flag, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size, NULL); + if( !mgr->halloc ) + return bt_mgrclose (mgr), NULL; + + flag = FILE_MAP_WRITE; + mgr->latchmgr = MapViewOfFile(mgr->halloc, flag, 0, 0, (BT_latchtable / (mgr->page_size / sizeof(BtLatchSet)) + 1 + LATCH_page) * mgr->page_size); + if( !mgr->latchmgr ) + return GetLastError(), bt_mgrclose (mgr), NULL; + + mgr->latchsets = (void *)((char *)mgr->latchmgr + LATCH_page * mgr->page_size); +#endif + +#ifdef unix + free (latchmgr); +#else + VirtualFree (latchmgr, 0, MEM_RELEASE); +#endif + return mgr; +} + +// open BTree access method +// based on buffer manager + +BtDb *bt_open (BtMgr *mgr) +{ +BtDb *bt = malloc (sizeof(*bt)); + + memset (bt, 0, sizeof(*bt)); + bt->mgr = mgr; +#ifdef unix + bt->mem = malloc (2 *mgr->page_size); +#else + bt->mem = VirtualAlloc(NULL, 2 * mgr->page_size, MEM_COMMIT, PAGE_READWRITE); +#endif + bt->frame = (BtPage)bt->mem; + bt->cursor = (BtPage)(bt->mem + 1 * mgr->page_size); + return bt; +} + +// compare two keys, returning > 0, = 0, or < 0 +// as the comparison value + +int keycmp (BtKey key1, unsigned char *key2, uint len2) +{ +uint len1 = key1->len; +int ans; + + if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) ) + return ans; + + if( len1 > len2 ) + return 1; + if( len1 < len2 ) + return -1; + + return 0; +} + +// Buffer Pool mgr + +// find segment in pool +// must be called with hashslot idx locked +// return NULL if not there +// otherwise return node + +BtPool *bt_findpool(BtDb *bt, uid page_no, uint idx) +{ +BtPool *pool; +uint slot; + + // compute start of hash chain in pool + + if( slot = bt->mgr->hash[idx] ) + pool = bt->mgr->pool + slot; + else + return NULL; + + page_no &= ~bt->mgr->poolmask; + + while( pool->basepage != page_no ) + if( pool = pool->hashnext ) + continue; + else + return NULL; + + return pool; +} + +// add segment to hash table + +void bt_linkhash(BtDb *bt, BtPool *pool, uid page_no, int idx) +{ +BtPool *node; +uint slot; + + pool->hashprev = pool->hashnext = NULL; + pool->basepage = page_no & ~bt->mgr->poolmask; + pool->pin = CLOCK_bit + 1; + + if( slot = bt->mgr->hash[idx] ) { + node = bt->mgr->pool + slot; + pool->hashnext = node; + node->hashprev = pool; + } + + bt->mgr->hash[idx] = pool->slot; +} + +// map new buffer pool segment to virtual memory + +BTERR bt_mapsegment(BtDb *bt, BtPool *pool, uid page_no) +{ +off64_t off = (page_no & ~bt->mgr->poolmask) << bt->mgr->page_bits; +off64_t limit = off + ((bt->mgr->poolmask+1) << bt->mgr->page_bits); +int flag; + +#ifdef unix + flag = PROT_READ | ( bt->mgr->mode == BT_ro ? 0 : PROT_WRITE ); + pool->map = mmap (0, (bt->mgr->poolmask+1) << bt->mgr->page_bits, flag, MAP_SHARED, bt->mgr->idx, off); + if( pool->map == MAP_FAILED ) + return bt->err = BTERR_map; + +#else + flag = ( bt->mgr->mode == BT_ro ? PAGE_READONLY : PAGE_READWRITE ); + pool->hmap = CreateFileMapping(bt->mgr->idx, NULL, flag, (DWORD)(limit >> 32), (DWORD)limit, NULL); + if( !pool->hmap ) + return bt->err = BTERR_map; + + flag = ( bt->mgr->mode == BT_ro ? FILE_MAP_READ : FILE_MAP_WRITE ); + pool->map = MapViewOfFile(pool->hmap, flag, (DWORD)(off >> 32), (DWORD)off, (bt->mgr->poolmask+1) << bt->mgr->page_bits); + if( !pool->map ) + return bt->err = BTERR_map; +#endif + return bt->err = 0; +} + +// calculate page within pool + +BtPage bt_page (BtDb *bt, BtPool *pool, uid page_no) +{ +uint subpage = (uint)(page_no & bt->mgr->poolmask); // page within mapping +BtPage page; + + page = (BtPage)(pool->map + (subpage << bt->mgr->page_bits)); + return page; +} + +// release pool pin + +void bt_unpinpool (BtPool *pool) +{ +#ifdef unix + __sync_fetch_and_add(&pool->pin, -1); +#else + _InterlockedDecrement16 (&pool->pin); +#endif +} + +// find or place requested page in segment-pool +// return pool table entry, incrementing pin + +BtPool *bt_pinpool(BtDb *bt, uid page_no) +{ +uint slot, hashidx, idx, victim; +BtPool *pool, *node, *next; + + // lock hash table chain + + hashidx = (uint)(page_no >> bt->mgr->seg_bits) % bt->mgr->hashsize; + bt_spinwritelock (&bt->mgr->latch[hashidx]); + + // look up in hash table + + if( pool = bt_findpool(bt, page_no, hashidx) ) { +#ifdef unix + __sync_fetch_and_or(&pool->pin, CLOCK_bit); + __sync_fetch_and_add(&pool->pin, 1); +#else + _InterlockedOr16 (&pool->pin, CLOCK_bit); + _InterlockedIncrement16 (&pool->pin); +#endif + bt_spinreleasewrite (&bt->mgr->latch[hashidx]); + return pool; + } + + // allocate a new pool node + // and add to hash table + +#ifdef unix + slot = __sync_fetch_and_add(&bt->mgr->poolcnt, 1); +#else + slot = _InterlockedIncrement16 (&bt->mgr->poolcnt) - 1; +#endif + + if( ++slot < bt->mgr->poolmax ) { + pool = bt->mgr->pool + slot; + pool->slot = slot; + + if( bt_mapsegment(bt, pool, page_no) ) + return NULL; + + bt_linkhash(bt, pool, page_no, hashidx); + bt_spinreleasewrite (&bt->mgr->latch[hashidx]); + return pool; + } + + // pool table is full + // find best pool entry to evict + +#ifdef unix + __sync_fetch_and_add(&bt->mgr->poolcnt, -1); +#else + _InterlockedDecrement16 (&bt->mgr->poolcnt); +#endif + + while( 1 ) { +#ifdef unix + victim = __sync_fetch_and_add(&bt->mgr->evicted, 1); +#else + victim = _InterlockedIncrement (&bt->mgr->evicted) - 1; +#endif + victim %= bt->mgr->poolmax; + pool = bt->mgr->pool + victim; + idx = (uint)(pool->basepage >> bt->mgr->seg_bits) % bt->mgr->hashsize; + + if( !victim ) + continue; + + // try to get write lock + // skip entry if not obtained + + if( !bt_spinwritetry (&bt->mgr->latch[idx]) ) + continue; + + // skip this entry if + // page is pinned + // or clock bit is set + + if( pool->pin ) { +#ifdef unix + __sync_fetch_and_and(&pool->pin, ~CLOCK_bit); +#else + _InterlockedAnd16 (&pool->pin, ~CLOCK_bit); +#endif + bt_spinreleasewrite (&bt->mgr->latch[idx]); + continue; + } + + // unlink victim pool node from hash table + + if( node = pool->hashprev ) + node->hashnext = pool->hashnext; + else if( node = pool->hashnext ) + bt->mgr->hash[idx] = node->slot; + else + bt->mgr->hash[idx] = 0; + + if( node = pool->hashnext ) + node->hashprev = pool->hashprev; + + bt_spinreleasewrite (&bt->mgr->latch[idx]); + + // remove old file mapping +#ifdef unix + munmap (pool->map, (bt->mgr->poolmask+1) << bt->mgr->page_bits); +#else +// FlushViewOfFile(pool->map, 0); + UnmapViewOfFile(pool->map); + CloseHandle(pool->hmap); +#endif + pool->map = NULL; + + // create new pool mapping + // and link into hash table + + if( bt_mapsegment(bt, pool, page_no) ) + return NULL; + + bt_linkhash(bt, pool, page_no, hashidx); + bt_spinreleasewrite (&bt->mgr->latch[hashidx]); + return pool; + } +} + +// place write, read, or parent lock on requested page_no. + +void bt_lockpage(BtLock mode, BtLatchSet *set) +{ + switch( mode ) { + case BtLockRead: + ReadLock (set->readwr); + break; + case BtLockWrite: + WriteLock (set->readwr); + break; + case BtLockAccess: + ReadLock (set->access); + break; + case BtLockDelete: + WriteLock (set->access); + break; + case BtLockParent: + WriteLock (set->parent); + break; + } +} + +// remove write, read, or parent lock on requested page + +void bt_unlockpage(BtLock mode, BtLatchSet *set) +{ + switch( mode ) { + case BtLockRead: + ReadRelease (set->readwr); + break; + case BtLockWrite: + WriteRelease (set->readwr); + break; + case BtLockAccess: + ReadRelease (set->access); + break; + case BtLockDelete: + WriteRelease (set->access); + break; + case BtLockParent: + WriteRelease (set->parent); + break; + } +} + +// allocate a new page and write page into it + +uid bt_newpage(BtDb *bt, BtPage page) +{ +BtPageSet set[1]; +uid new_page; +int blk; + + // lock allocation page + + bt_spinwritelock(bt->mgr->latchmgr->lock); + + // use empty chain first + // else allocate empty page + + if( new_page = bt_getid(bt->mgr->latchmgr->chain) ) { + if( set->pool = bt_pinpool (bt, new_page) ) + set->page = bt_page (bt, set->pool, new_page); + else + return 0; + + bt_putid(bt->mgr->latchmgr->chain, bt_getid(set->page->right)); + bt_unpinpool (set->pool); + } else { + new_page = bt_getid(bt->mgr->latchmgr->alloc->right); + bt_putid(bt->mgr->latchmgr->alloc->right, new_page+1); +#ifdef unix + // if writing first page of pool block, set file length thru last page + + if( (new_page & bt->mgr->poolmask) == 0 ) + ftruncate (bt->mgr->idx, (new_page + bt->mgr->poolmask + 1) << bt->mgr->page_bits); +#endif + } +#ifdef unix + // unlock allocation latch + + bt_spinreleasewrite(bt->mgr->latchmgr->lock); +#endif + + // bring new page into pool and copy page. + // this will extend the file into the new pages on WIN32. + + if( set->pool = bt_pinpool (bt, new_page) ) + set->page = bt_page (bt, set->pool, new_page); + else + return 0; + + memcpy(set->page, page, bt->mgr->page_size); + bt_unpinpool (set->pool); + +#ifndef unix + // unlock allocation latch + + bt_spinreleasewrite(bt->mgr->latchmgr->lock); +#endif + return new_page; +} + +// find slot in page for given key at a given level + +int bt_findslot (BtPageSet *set, unsigned char *key, uint len) +{ +uint diff, higher = set->page->cnt, low = 1, slot; +uint good = 0; + + // make stopper key an infinite fence value + + if( bt_getid (set->page->right) ) + higher++; + else + good++; + + // low is the lowest candidate. + // loop ends when they meet + + // higher is already + // tested as .ge. the passed key. + + while( diff = higher - low ) { + slot = low + ( diff >> 1 ); + if( keycmp (keyptr(set->page, slot), key, len) < 0 ) + low = slot + 1; + else + higher = slot, good++; + } + + // return zero if key is on right link page + + return good ? higher : 0; +} + +// find and load page at given level for given key +// leave page rd or wr locked as requested + +int bt_loadpage (BtDb *bt, BtPageSet *set, unsigned char *key, uint len, uint lvl, BtLock lock) +{ +uid page_no = ROOT_page, prevpage = 0; +uint drill = 0xff, slot; +BtLatchSet *prevlatch; +uint mode, prevmode; +BtPool *prevpool; + + // start at root of btree and drill down + + do { + // determine lock mode of drill level + mode = (drill == lvl) ? lock : BtLockRead; + + set->latch = bt_pinlatch (bt, page_no); + set->page_no = page_no; + + // pin page contents + + if( set->pool = bt_pinpool (bt, page_no) ) + set->page = bt_page (bt, set->pool, page_no); + else + return 0; + + // obtain access lock using lock chaining with Access mode + + if( page_no > ROOT_page ) + bt_lockpage(BtLockAccess, set->latch); + + // release & unpin parent page + + if( prevpage ) { + bt_unlockpage(prevmode, prevlatch); + bt_unpinlatch (prevlatch); + bt_unpinpool (prevpool); + prevpage = 0; + } + + // obtain read lock using lock chaining + + bt_lockpage(mode, set->latch); + + if( set->page->free ) + return bt->err = BTERR_struct, 0; + + if( page_no > ROOT_page ) + bt_unlockpage(BtLockAccess, set->latch); + + // re-read and re-lock root after determining actual level of root + + if( set->page->lvl != drill) { + if( set->page_no != ROOT_page ) + return bt->err = BTERR_struct, 0; + + drill = set->page->lvl; + + if( lock != BtLockRead && drill == lvl ) { + bt_unlockpage(mode, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + continue; + } + } + + prevpage = set->page_no; + prevlatch = set->latch; + prevpool = set->pool; + prevmode = mode; + + // find key on page at this level + // and descend to requested level + + if( !set->page->kill ) + if( slot = bt_findslot (set, key, len) ) { + if( drill == lvl ) + return slot; + + while( slotptr(set->page, slot)->dead ) + if( slot++ < set->page->cnt ) + continue; + else + goto slideright; + + page_no = bt_getid(valptr(set->page, slot)->value); + drill--; + continue; + } + + // or slide right into next page + +slideright: + page_no = bt_getid(set->page->right); + + } while( page_no ); + + // return error on end of right chain + + bt->err = BTERR_struct; + return 0; // return error +} + +// return page to free list +// page must be delete & write locked + +void bt_freepage (BtDb *bt, BtPageSet *set) +{ + // lock allocation page + + bt_spinwritelock (bt->mgr->latchmgr->lock); + + // store chain + memcpy(set->page->right, bt->mgr->latchmgr->chain, BtId); + bt_putid(bt->mgr->latchmgr->chain, set->page_no); + set->page->free = 1; + + // unlock released page + + bt_unlockpage (BtLockDelete, set->latch); + bt_unlockpage (BtLockWrite, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + + // unlock allocation page + + bt_spinreleasewrite (bt->mgr->latchmgr->lock); +} + +// a fence key was deleted from a page +// push new fence value upwards + +BTERR bt_fixfence (BtDb *bt, BtPageSet *set, uint lvl) +{ +unsigned char leftkey[256], rightkey[256]; +unsigned char value[BtId]; +uid page_no; +BtKey ptr; + + // remove the old fence value + + ptr = keyptr(set->page, set->page->cnt); + memcpy (rightkey, ptr, ptr->len + 1); + + memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot)); + set->page->dirty = 1; + + ptr = keyptr(set->page, set->page->cnt); + memcpy (leftkey, ptr, ptr->len + 1); + page_no = set->page_no; + + bt_lockpage (BtLockParent, set->latch); + bt_unlockpage (BtLockWrite, set->latch); + + // insert new (now smaller) fence key + + bt_putid (value, page_no); + + if( bt_insertkey (bt, leftkey+1, *leftkey, lvl+1, value, BtId) ) + return bt->err; + + // now delete old fence key + + if( bt_deletekey (bt, rightkey+1, *rightkey, lvl+1) ) + return bt->err; + + bt_unlockpage (BtLockParent, set->latch); + bt_unpinlatch(set->latch); + bt_unpinpool (set->pool); + return 0; +} + +// root has a single child +// collapse a level from the tree + +BTERR bt_collapseroot (BtDb *bt, BtPageSet *root) +{ +BtPageSet child[1]; +uint idx; + + // find the child entry and promote as new root contents + + do { + for( idx = 0; idx++ < root->page->cnt; ) + if( !slotptr(root->page, idx)->dead ) + break; + + child->page_no = bt_getid (valptr(root->page, idx)->value); + + child->latch = bt_pinlatch (bt, child->page_no); + bt_lockpage (BtLockDelete, child->latch); + bt_lockpage (BtLockWrite, child->latch); + + if( child->pool = bt_pinpool (bt, child->page_no) ) + child->page = bt_page (bt, child->pool, child->page_no); + else + return bt->err; + + memcpy (root->page, child->page, bt->mgr->page_size); + bt_freepage (bt, child); + + } while( root->page->lvl > 1 && root->page->act == 1 ); + + bt_unlockpage (BtLockWrite, root->latch); + bt_unpinlatch (root->latch); + bt_unpinpool (root->pool); + return 0; +} + +// find and delete key on page by marking delete flag bit +// if page becomes empty, delete it from the btree + +BTERR bt_deletekey (BtDb *bt, unsigned char *key, uint len, uint lvl) +{ +unsigned char lowerfence[256], higherfence[256]; +uint slot, idx, dirty = 0, fence, found; +BtPageSet set[1], right[1]; +unsigned char value[BtId]; +BtKey ptr; + + if( slot = bt_loadpage (bt, set, key, len, lvl, BtLockWrite) ) + ptr = keyptr(set->page, slot); + else + return bt->err; + + // are we deleting a fence slot? + + fence = slot == set->page->cnt; + + // if key is found delete it, otherwise ignore request + + if( found = !keycmp (ptr, key, len) ) + if( found = slotptr(set->page, slot)->dead == 0 ) { + dirty = slotptr(set->page, slot)->dead = 1; + set->page->dirty = 1; + set->page->act--; + + // collapse empty slots + + while( idx = set->page->cnt - 1 ) + if( slotptr(set->page, idx)->dead ) { + *slotptr(set->page, idx) = *slotptr(set->page, idx + 1); + memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot)); + } else + break; + } + + // did we delete a fence key in an upper level? + + if( dirty && lvl && set->page->act && fence ) + if( bt_fixfence (bt, set, lvl) ) + return bt->err; + else + return bt->found = found, 0; + + // is this a collapsed root? + + if( lvl > 1 && set->page_no == ROOT_page && set->page->act == 1 ) + if( bt_collapseroot (bt, set) ) + return bt->err; + else + return bt->found = found, 0; + + // return if page is not empty + + if( set->page->act ) { + bt_unlockpage(BtLockWrite, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + return bt->found = found, 0; + } + + // cache copy of fence key + // to post in parent + + ptr = keyptr(set->page, set->page->cnt); + memcpy (lowerfence, ptr, ptr->len + 1); + + // obtain lock on right page + + right->page_no = bt_getid(set->page->right); + right->latch = bt_pinlatch (bt, right->page_no); + bt_lockpage (BtLockWrite, right->latch); + + // pin page contents + + if( right->pool = bt_pinpool (bt, right->page_no) ) + right->page = bt_page (bt, right->pool, right->page_no); + else + return 0; + + if( right->page->kill ) + return bt->err = BTERR_struct; + + // pull contents of right peer into our empty page + + memcpy (set->page, right->page, bt->mgr->page_size); + + // cache copy of key to update + + ptr = keyptr(right->page, right->page->cnt); + memcpy (higherfence, ptr, ptr->len + 1); + + // mark right page deleted and point it to left page + // until we can post parent updates + + bt_putid (right->page->right, set->page_no); + right->page->kill = 1; + + bt_lockpage (BtLockParent, right->latch); + bt_unlockpage (BtLockWrite, right->latch); + + bt_lockpage (BtLockParent, set->latch); + bt_unlockpage (BtLockWrite, set->latch); + + // redirect higher key directly to our new node contents + + bt_putid (value, set->page_no); + + if( bt_insertkey (bt, higherfence+1, *higherfence, lvl+1, value, BtId) ) + return bt->err; + + // delete old lower key to our node + + if( bt_deletekey (bt, lowerfence+1, *lowerfence, lvl+1) ) + return bt->err; + + // obtain delete and write locks to right node + + bt_unlockpage (BtLockParent, right->latch); + bt_lockpage (BtLockDelete, right->latch); + bt_lockpage (BtLockWrite, right->latch); + bt_freepage (bt, right); + + bt_unlockpage (BtLockParent, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + bt->found = found; + return 0; +} + +// find key in leaf level and return number of value bytes +// or (-1) if not found + +int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax) +{ +BtPageSet set[1]; +uint slot; +BtKey ptr; +BtVal val; +int ret; + + if( slot = bt_loadpage (bt, set, key, keylen, 0, BtLockRead) ) + ptr = keyptr(set->page, slot); + else + return 0; + + // if key exists, return TRUE + // otherwise return FALSE + + if( !keycmp (ptr, key, keylen) ) { + val = valptr (set->page,slot); + if( valmax > val->len ) + valmax = val->len; + memcpy (value, val->value, valmax); + ret = valmax; + } else + ret = -1; + + bt_unlockpage (BtLockRead, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + return ret; +} + +// check page for space available, +// clean if necessary and return +// 0 - page needs splitting +// >0 new slot value + +uint bt_cleanpage(BtDb *bt, BtPage page, uint keylen, uint slot, uint vallen) +{ +uint nxt = bt->mgr->page_size; +uint cnt = 0, idx = 0; +uint max = page->cnt; +uint newslot = max; +BtKey key; +BtVal val; + + if( page->min >= (max+1) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1) + return slot; + + // skip cleanup if nothing to reclaim + + if( !page->dirty ) + return 0; + + memcpy (bt->frame, page, bt->mgr->page_size); + + // skip page info and set rest of page to zero + + memset (page+1, 0, bt->mgr->page_size - sizeof(*page)); + page->dirty = 0; + page->act = 0; + + // try cleaning up page first + // by removing deleted keys + + while( cnt++ < max ) { + if( cnt == slot ) + newslot = idx + 1; + if( cnt < max && slotptr(bt->frame,cnt)->dead ) + continue; + + // copy the key across + + key = keyptr(bt->frame, cnt); + nxt -= key->len + 1; + memcpy ((unsigned char *)page + nxt, key, key->len + 1); + + // copy the value across + + val = valptr(bt->frame, cnt); + nxt -= val->len + 1; + ((unsigned char *)page)[nxt] = val->len; + memcpy ((unsigned char *)page + nxt + 1, val, val->len); + + // set up the slot + + slotptr(page, idx)->off = nxt; + + if( !(slotptr(page, idx)->dead = slotptr(bt->frame, cnt)->dead) ) + page->act++; + } + + page->min = nxt; + page->cnt = idx; + + // see if page has enough space now, or does it need splitting? + + if( page->min >= (idx+1) * sizeof(BtSlot) + sizeof(*page) + keylen + 1 + vallen + 1 ) + return newslot; + + return 0; +} + +// split the root and raise the height of the btree + +BTERR bt_splitroot(BtDb *bt, BtPageSet *root, unsigned char *leftkey, uid page_no2) +{ +uint nxt = bt->mgr->page_size; +unsigned char value[BtId]; +uid left; + + // Obtain an empty page to use, and copy the current + // root contents into it, e.g. lower keys + + if( !(left = bt_newpage(bt, root->page)) ) + return bt->err; + + // preserve the page info at the bottom + // of higher keys and set rest to zero + + memset(root->page+1, 0, bt->mgr->page_size - sizeof(*root->page)); + + // insert lower keys page fence key on newroot page as first key + + nxt -= BtId + 1; + bt_putid (value, left); + ((unsigned char *)root->page)[nxt] = BtId; + memcpy ((unsigned char *)root->page + nxt + 1, value, BtId); + + nxt -= *leftkey + 1; + memcpy ((unsigned char *)root->page + nxt, leftkey, *leftkey + 1); + slotptr(root->page, 1)->off = nxt; + + // insert stopper key on newroot page + // and increase the root height + + nxt -= 3 + BtId + 1; + ((unsigned char *)root->page)[nxt] = 2; + ((unsigned char *)root->page)[nxt+1] = 0xff; + ((unsigned char *)root->page)[nxt+2] = 0xff; + + bt_putid (value, page_no2); + ((unsigned char *)root->page)[nxt+3] = BtId; + memcpy ((unsigned char *)root->page + nxt + 4, value, BtId); + slotptr(root->page, 2)->off = nxt; + + bt_putid(root->page->right, 0); + root->page->min = nxt; // reset lowest used offset and key count + root->page->cnt = 2; + root->page->act = 2; + root->page->lvl++; + + // release and unpin root + + bt_unlockpage(BtLockWrite, root->latch); + bt_unpinlatch (root->latch); + bt_unpinpool (root->pool); + return 0; +} + +// split already locked full node +// return unlocked. + +BTERR bt_splitpage (BtDb *bt, BtPageSet *set) +{ +uint cnt = 0, idx = 0, max, nxt = bt->mgr->page_size; +unsigned char fencekey[256], rightkey[256]; +unsigned char value[BtId]; +uint lvl = set->page->lvl; +BtPageSet right[1]; +uint prev; +BtKey key; +BtVal val; + + // split higher half of keys to bt->frame + + memset (bt->frame, 0, bt->mgr->page_size); + max = set->page->cnt; + cnt = max / 2; + idx = 0; + + while( cnt++ < max ) { + val = valptr(set->page, cnt); + nxt -= val->len + 1; + ((unsigned char *)bt->frame)[nxt] = val->len; + memcpy ((unsigned char *)bt->frame + nxt + 1, val->value, val->len); + + key = keyptr(set->page, cnt); + nxt -= key->len + 1; + memcpy ((unsigned char *)bt->frame + nxt, key, key->len + 1); + + slotptr(bt->frame, ++idx)->off = nxt; + + if( !(slotptr(bt->frame, idx)->dead = slotptr(set->page, cnt)->dead) ) + bt->frame->act++; + } + + // remember existing fence key for new page to the right + + memcpy (rightkey, key, key->len + 1); + + bt->frame->bits = bt->mgr->page_bits; + bt->frame->min = nxt; + bt->frame->cnt = idx; + bt->frame->lvl = lvl; + + // link right node + + if( set->page_no > ROOT_page ) + memcpy (bt->frame->right, set->page->right, BtId); + + // get new free page and write higher keys to it. + + if( !(right->page_no = bt_newpage(bt, bt->frame)) ) + return bt->err; + + // update lower keys to continue in old page + + memcpy (bt->frame, set->page, bt->mgr->page_size); + memset (set->page+1, 0, bt->mgr->page_size - sizeof(*set->page)); + nxt = bt->mgr->page_size; + set->page->dirty = 0; + set->page->act = 0; + cnt = 0; + idx = 0; + + // assemble page of smaller keys + + while( cnt++ < max / 2 ) { + val = valptr(bt->frame, cnt); + nxt -= val->len + 1; + ((unsigned char *)set->page)[nxt] = val->len; + memcpy ((unsigned char *)set->page + nxt + 1, val->value, val->len); + + key = keyptr(bt->frame, cnt); + nxt -= key->len + 1; + memcpy ((unsigned char *)set->page + nxt, key, key->len + 1); + slotptr(set->page, ++idx)->off = nxt; + set->page->act++; + } + + // remember fence key for smaller page + + memcpy(fencekey, key, key->len + 1); + + bt_putid(set->page->right, right->page_no); + set->page->min = nxt; + set->page->cnt = idx; + + // if current page is the root page, split it + + if( set->page_no == ROOT_page ) + return bt_splitroot (bt, set, fencekey, right->page_no); + + // insert new fences in their parent pages + + right->latch = bt_pinlatch (bt, right->page_no); + bt_lockpage (BtLockParent, right->latch); + + bt_lockpage (BtLockParent, set->latch); + bt_unlockpage (BtLockWrite, set->latch); + + // insert new fence for reformulated left block of smaller keys + + bt_putid (value, set->page_no); + + if( bt_insertkey (bt, fencekey+1, *fencekey, lvl+1, value, BtId) ) + return bt->err; + + // switch fence for right block of larger keys to new right page + + bt_putid (value, right->page_no); + + if( bt_insertkey (bt, rightkey+1, *rightkey, lvl+1, value, BtId) ) + return bt->err; + + bt_unlockpage (BtLockParent, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + + bt_unlockpage (BtLockParent, right->latch); + bt_unpinlatch (right->latch); + return 0; +} +// Insert new key into the btree at given level. + +BTERR bt_insertkey (BtDb *bt, unsigned char *key, uint keylen, uint lvl, unsigned char *value, uint vallen) +{ +BtPageSet set[1]; +uint slot, idx; +uint reuse; +BtKey ptr; +BtVal val; + + while( 1 ) { + if( slot = bt_loadpage (bt, set, key, keylen, lvl, BtLockWrite) ) + ptr = keyptr(set->page, slot); + else + { + if( !bt->err ) + bt->err = BTERR_ovflw; + return bt->err; + } + + // if key already exists, update id and return + + if( reuse = !keycmp (ptr, key, keylen) ) + if( val = valptr(set->page, slot), val->len >= vallen ) { + if( slotptr(set->page, slot)->dead ) + set->page->act++; + slotptr(set->page, slot)->dead = 0; + val->len = vallen; + memcpy (val->value, value, vallen); + bt_unlockpage(BtLockWrite, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + return 0; + } else { + if( !slotptr(set->page, slot)->dead ) + set->page->act--; + slotptr(set->page, slot)->dead = 1; + set->page->dirty = 1; + } + + // check if page has enough space + + if( slot = bt_cleanpage (bt, set->page, keylen, slot, vallen) ) + break; + + if( bt_splitpage (bt, set) ) + return bt->err; + } + + // calculate next available slot and copy key into page + + set->page->min -= vallen + 1; // reset lowest used offset + ((unsigned char *)set->page)[set->page->min] = vallen; + memcpy ((unsigned char *)set->page + set->page->min +1, value, vallen ); + + set->page->min -= keylen + 1; // reset lowest used offset + ((unsigned char *)set->page)[set->page->min] = keylen; + memcpy ((unsigned char *)set->page + set->page->min +1, key, keylen ); + + for( idx = slot; idx < set->page->cnt; idx++ ) + if( slotptr(set->page, idx)->dead ) + break; + + // now insert key into array before slot + + if( !reuse && idx == set->page->cnt ) + idx++, set->page->cnt++; + + set->page->act++; + + while( idx > slot ) + *slotptr(set->page, idx) = *slotptr(set->page, idx -1), idx--; + + slotptr(set->page, slot)->off = set->page->min; + slotptr(set->page, slot)->dead = 0; + + bt_unlockpage (BtLockWrite, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + return 0; +} + +// cache page of keys into cursor and return starting slot for given key + +uint bt_startkey (BtDb *bt, unsigned char *key, uint len) +{ +BtPageSet set[1]; +uint slot; + + // cache page for retrieval + + if( slot = bt_loadpage (bt, set, key, len, 0, BtLockRead) ) + memcpy (bt->cursor, set->page, bt->mgr->page_size); + else + return 0; + + bt->cursor_page = set->page_no; + + bt_unlockpage(BtLockRead, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + return slot; +} + +// return next slot for cursor page +// or slide cursor right into next page + +uint bt_nextkey (BtDb *bt, uint slot) +{ +BtPageSet set[1]; +uid right; + + do { + right = bt_getid(bt->cursor->right); + + while( slot++ < bt->cursor->cnt ) + if( slotptr(bt->cursor,slot)->dead ) + continue; + else if( right || (slot < bt->cursor->cnt) ) // skip infinite stopper + return slot; + else + break; + + if( !right ) + break; + + bt->cursor_page = right; + + if( set->pool = bt_pinpool (bt, right) ) + set->page = bt_page (bt, set->pool, right); + else + return 0; + + set->latch = bt_pinlatch (bt, right); + bt_lockpage(BtLockRead, set->latch); + + memcpy (bt->cursor, set->page, bt->mgr->page_size); + + bt_unlockpage(BtLockRead, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + slot = 0; + + } while( 1 ); + + return bt->err = 0; +} + +BtKey bt_key(BtDb *bt, uint slot) +{ + return keyptr(bt->cursor, slot); +} + +BtVal bt_val(BtDb *bt, uint slot) +{ + return valptr(bt->cursor,slot); +} + +#ifdef STANDALONE + +#ifndef unix +double getCpuTime(int type) +{ +FILETIME crtime[1]; +FILETIME xittime[1]; +FILETIME systime[1]; +FILETIME usrtime[1]; +SYSTEMTIME timeconv[1]; +double ans = 0; + + memset (timeconv, 0, sizeof(SYSTEMTIME)); + + switch( type ) { + case 0: + GetSystemTimeAsFileTime (xittime); + FileTimeToSystemTime (xittime, timeconv); + ans = (double)timeconv->wDayOfWeek * 3600 * 24; + break; + case 1: + GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); + FileTimeToSystemTime (usrtime, timeconv); + break; + case 2: + GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); + FileTimeToSystemTime (systime, timeconv); + break; + } + + ans += (double)timeconv->wHour * 3600; + ans += (double)timeconv->wMinute * 60; + ans += (double)timeconv->wSecond; + ans += (double)timeconv->wMilliseconds / 1000; + return ans; +} +#else +#include +#include + +double getCpuTime(int type) +{ +struct rusage used[1]; +struct timeval tv[1]; + + switch( type ) { + case 0: + gettimeofday(tv, NULL); + return (double)tv->tv_sec + (double)tv->tv_usec / 1000000; + + case 1: + getrusage(RUSAGE_SELF, used); + return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000; + + case 2: + getrusage(RUSAGE_SELF, used); + return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000; + } + + return 0; +} +#endif + +uint bt_latchaudit (BtDb *bt) +{ +ushort idx, hashidx; +uid next, page_no; +BtLatchSet *latch; +uint cnt = 0; +BtKey ptr; + +#ifdef unix + posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL); +#endif + if( *(ushort *)(bt->mgr->latchmgr->lock) ) + fprintf(stderr, "Alloc page locked\n"); + *(ushort *)(bt->mgr->latchmgr->lock) = 0; + + for( idx = 1; idx <= bt->mgr->latchmgr->latchdeployed; idx++ ) { + latch = bt->mgr->latchsets + idx; + if( *latch->readwr->rin & MASK ) + fprintf(stderr, "latchset %d rwlocked for page %.8x\n", idx, latch->page_no); + memset ((ushort *)latch->readwr, 0, sizeof(RWLock)); + + if( *latch->access->rin & MASK ) + fprintf(stderr, "latchset %d accesslocked for page %.8x\n", idx, latch->page_no); + memset ((ushort *)latch->access, 0, sizeof(RWLock)); + + if( *latch->parent->rin & MASK ) + fprintf(stderr, "latchset %d parentlocked for page %.8x\n", idx, latch->page_no); + memset ((ushort *)latch->access, 0, sizeof(RWLock)); + + if( latch->pin ) { + fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no); + latch->pin = 0; + } + } + + for( hashidx = 0; hashidx < bt->mgr->latchmgr->latchhash; hashidx++ ) { + if( *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) ) + fprintf(stderr, "hash entry %d locked\n", hashidx); + + *(ushort *)(bt->mgr->latchmgr->table[hashidx].latch) = 0; + + if( idx = bt->mgr->latchmgr->table[hashidx].slot ) do { + latch = bt->mgr->latchsets + idx; + if( *(ushort *)latch->busy ) + fprintf(stderr, "latchset %d busylocked for page %.8x\n", idx, latch->page_no); + *(ushort *)latch->busy = 0; + if( latch->pin ) + fprintf(stderr, "latchset %d pinned for page %.8x\n", idx, latch->page_no); + } while( idx = latch->next ); + } + + next = bt->mgr->latchmgr->nlatchpage + LATCH_page; + page_no = LEAF_page; + + while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) { + off64_t off = page_no << bt->mgr->page_bits; +#ifdef unix + pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off); +#else + DWORD amt[1]; + + SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); + + if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL)) + fprintf(stderr, "page %.8x unable to read\n", page_no); + + if( *amt < bt->mgr->page_size ) + fprintf(stderr, "page %.8x unable to read\n", page_no); +#endif + if( !bt->frame->free ) { + for( idx = 0; idx++ < bt->frame->cnt - 1; ) { + ptr = keyptr(bt->frame, idx+1); + if( keycmp (keyptr(bt->frame, idx), ptr->key, ptr->len) >= 0 ) + fprintf(stderr, "page %.8x idx %.2x out of order\n", page_no, idx); + } + if( !bt->frame->lvl ) + cnt += bt->frame->act; + } + if( page_no > LEAF_page ) + next = page_no + 1; + page_no = next; + } + return cnt - 1; +} + +typedef struct { + char type, idx; + char *infile; + BtMgr *mgr; + int num; +} ThreadArg; + +// standalone program to index file of keys +// then list them onto std-out + +#ifdef unix +void *index_file (void *arg) +#else +uint __stdcall index_file (void *arg) +#endif +{ +int line = 0, found = 0, cnt = 0; +uid next, page_no = LEAF_page; // start on first page of leaves +unsigned char key[256]; +ThreadArg *args = arg; +int ch, len = 0, slot; +BtPageSet set[1]; +BtKey ptr; +BtDb *bt; +FILE *in; + + bt = bt_open (args->mgr); + + switch(args->type | 0x20) + { + case 'a': + fprintf(stderr, "started latch mgr audit\n"); + cnt = bt_latchaudit (bt); + fprintf(stderr, "finished latch mgr audit, found %d keys\n", cnt); + break; + + case 'p': + fprintf(stderr, "started pennysort for %s\n", args->infile); + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + + if( bt_insertkey (bt, key, 10, 0, key + 10, len - 10) ) + fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); + len = 0; + } + else if( len < 255 ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys\n", args->infile, line); + break; + + case 'w': + fprintf(stderr, "started indexing for %s\n", args->infile); + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + + if( args->num == 1 ) + sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9; + + else if( args->num ) + sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9; + + if( bt_insertkey (bt, key, len, 0, NULL, 0) ) + fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); + len = 0; + } + else if( len < 255 ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys\n", args->infile, line); + break; + + case 'd': + fprintf(stderr, "started deleting keys for %s\n", args->infile); + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + if( args->num == 1 ) + sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9; + + else if( args->num ) + sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9; + + if( bt_deletekey (bt, key, len, 0) ) + fprintf(stderr, "Error %d Line: %d\n", bt->err, line), exit(0); + len = 0; + } + else if( len < 255 ) + key[len++] = ch; + fprintf(stderr, "finished %s for keys, %d \n", args->infile, line); + break; + + case 'f': + fprintf(stderr, "started finding keys for %s\n", args->infile); + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + if( args->num == 1 ) + sprintf((char *)key+len, "%.9d", 1000000000 - line), len += 9; + + else if( args->num ) + sprintf((char *)key+len, "%.9d", line + args->idx * args->num), len += 9; + + if( bt_findkey (bt, key, len, NULL, 0) == 0 ) + found++; + else if( bt->err ) + fprintf(stderr, "Error %d Syserr %d Line: %d\n", bt->err, errno, line), exit(0); + len = 0; + } + else if( len < 255 ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found); + break; + + case 's': + fprintf(stderr, "started scanning\n"); + do { + if( set->pool = bt_pinpool (bt, page_no) ) + set->page = bt_page (bt, set->pool, page_no); + else + break; + set->latch = bt_pinlatch (bt, page_no); + bt_lockpage (BtLockRead, set->latch); + next = bt_getid (set->page->right); + cnt += set->page->act; + + for( slot = 0; slot++ < set->page->cnt; ) + if( next || slot < set->page->cnt ) + if( !slotptr(set->page, slot)->dead ) { + ptr = keyptr(set->page, slot); + fwrite (ptr->key, ptr->len, 1, stdout); + fputc ('\n', stdout); + } + + bt_unlockpage (BtLockRead, set->latch); + bt_unpinlatch (set->latch); + bt_unpinpool (set->pool); + } while( page_no = next ); + + cnt--; // remove stopper key + fprintf(stderr, " Total keys read %d\n", cnt); + break; + + case 'c': +#ifdef unix + posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL); +#endif + fprintf(stderr, "started counting\n"); + next = bt->mgr->latchmgr->nlatchpage + LATCH_page; + page_no = LEAF_page; + + while( page_no < bt_getid(bt->mgr->latchmgr->alloc->right) ) { + uid off = page_no << bt->mgr->page_bits; +#ifdef unix + pread (bt->mgr->idx, bt->frame, bt->mgr->page_size, off); +#else + DWORD amt[1]; + + SetFilePointer (bt->mgr->idx, (long)off, (long*)(&off)+1, FILE_BEGIN); + + if( !ReadFile(bt->mgr->idx, bt->frame, bt->mgr->page_size, amt, NULL)) + return bt->err = BTERR_map; + + if( *amt < bt->mgr->page_size ) + return bt->err = BTERR_map; +#endif + if( !bt->frame->free && !bt->frame->lvl ) + cnt += bt->frame->act; + if( page_no > LEAF_page ) + next = page_no + 1; + page_no = next; + } + + cnt--; // remove stopper key + fprintf(stderr, " Total keys read %d\n", cnt); + break; + } + + bt_close (bt); +#ifdef unix + return NULL; +#else + return 0; +#endif +} + +typedef struct timeval timer; + +int main (int argc, char **argv) +{ +int idx, cnt, len, slot, err; +int segsize, bits = 16; +double start, stop; +#ifdef unix +pthread_t *threads; +#else +HANDLE *threads; +#endif +ThreadArg *args; +uint poolsize = 0; +float elapsed; +int num = 0; +char key[1]; +BtMgr *mgr; +BtKey ptr; +BtDb *bt; + + if( argc < 3 ) { + fprintf (stderr, "Usage: %s idx_file Read/Write/Scan/Delete/Find [page_bits mapped_segments seg_bits line_numbers src_file1 src_file2 ... ]\n", argv[0]); + fprintf (stderr, " where page_bits is the page size in bits\n"); + fprintf (stderr, " mapped_segments is the number of mmap segments in buffer pool\n"); + fprintf (stderr, " seg_bits is the size of individual segments in buffer pool in pages in bits\n"); + fprintf (stderr, " line_numbers = 1 to append line numbers to keys\n"); + fprintf (stderr, " src_file1 thru src_filen are files of keys separated by newline\n"); + exit(0); + } + + start = getCpuTime(0); + + if( argc > 3 ) + bits = atoi(argv[3]); + + if( argc > 4 ) + poolsize = atoi(argv[4]); + + if( !poolsize ) + fprintf (stderr, "Warning: no mapped_pool\n"); + + if( poolsize > 65535 ) + fprintf (stderr, "Warning: mapped_pool > 65535 segments\n"); + + if( argc > 5 ) + segsize = atoi(argv[5]); + else + segsize = 4; // 16 pages per mmap segment + + if( argc > 6 ) + num = atoi(argv[6]); + + cnt = argc - 7; +#ifdef unix + threads = malloc (cnt * sizeof(pthread_t)); +#else + threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE)); +#endif + args = malloc (cnt * sizeof(ThreadArg)); + + mgr = bt_mgr ((argv[1]), BT_rw, bits, poolsize, segsize, poolsize / 8); + + if( !mgr ) { + fprintf(stderr, "Index Open Error %s\n", argv[1]); + exit (1); + } + + // fire off threads + + for( idx = 0; idx < cnt; idx++ ) { + args[idx].infile = argv[idx + 7]; + args[idx].type = argv[2][0]; + args[idx].mgr = mgr; + args[idx].num = num; + args[idx].idx = idx; +#ifdef unix + if( err = pthread_create (threads + idx, NULL, index_file, args + idx) ) + fprintf(stderr, "Error creating thread %d\n", err); +#else + threads[idx] = (HANDLE)_beginthreadex(NULL, 65536, index_file, args + idx, 0, NULL); +#endif + } + + // wait for termination + +#ifdef unix + for( idx = 0; idx < cnt; idx++ ) + pthread_join (threads[idx], NULL); +#else + WaitForMultipleObjects (cnt, threads, TRUE, INFINITE); + + for( idx = 0; idx < cnt; idx++ ) + CloseHandle(threads[idx]); + +#endif + elapsed = getCpuTime(0) - start; + fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); + elapsed = getCpuTime(1); + fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); + elapsed = getCpuTime(2); + fprintf(stderr, " sys %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); + + bt_mgrclose (mgr); +} + +#endif //STANDALONE -- 2.40.0