From fc75a8e8904725c121a24ea8353250b5d92ba5b7 Mon Sep 17 00:00:00 2001 From: unknown Date: Tue, 16 Dec 2014 12:39:37 -0800 Subject: [PATCH] Add multi/thread multi-process threadskv10h.c --- README.md | 6 +- threadskv10h.c | 3678 ++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 3681 insertions(+), 3 deletions(-) create mode 100644 threadskv10h.c diff --git a/README.md b/README.md index e4c2ce7..0233fbd 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ Btree-source-code ================= -A working project for High-concurrency B-tree source code in C. You probably want to download threadskv10g.c for the latest developement version. +A working project for High-concurrency B-tree source code in C. You probably want to download threadskv10h.c for the latest developement version. Here are files in the btree source code: @@ -35,11 +35,11 @@ threadskv7.c Multi-Threaded/Single-Process with atomic add of a set of keys unde threadskv8.c Multi-Threaded/Single-Process with atomic-consistent add of a set of keys based on threadskv6.c. Uses btree page latches as locking granularity. -threadskv10g.c Multi-Threaded/Single-Process with 2 Log-Structured-Merge (LSM) btrees based on threadskv8.c. Also adds dual leaf/interior node page sizes. +threadskv10h.c Multi-Threaded/Multi-Process with 2 Log-Structured-Merge (LSM) btrees based on threadskv8.c. Also adds dual leaf/interior node page sizes for each btree. Note that this file is linux only. Compilation is achieved on linux or Windows by: -gcc -D STANDALONE -O3 threadskv8.c -lpthread +gcc -D STANDALONE -O3 threadskv10g.c -lpthread or diff --git a/threadskv10h.c b/threadskv10h.c new file mode 100644 index 0000000..436ea43 --- /dev/null +++ b/threadskv10h.c @@ -0,0 +1,3678 @@ +// btree version threadskv10h futex version +// with reworked bt_deletekey code, +// phase-fair re-entrant reader writer lock, +// librarian page split code, +// duplicate key management +// bi-directional cursors +// ACID batched key-value updates +// LSM B-trees for write optimization +// larger sized leaf pages than non-leaf +// and LSM B-tree find & count operations + +// 15 DEC 2014 + +// author: karl malbrain, malbrain@cal.berkeley.edu + +/* +This work, including the source code, documentation +and related data, is placed into the public domain. + +The orginal author is Karl Malbrain. + +THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY +OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF +MERCHANTABILITY. THE AUTHOR OF THIS SOFTWARE, +ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE +RESULTING FROM THE USE, MODIFICATION, OR +REDISTRIBUTION OF THIS SOFTWARE. +*/ + +// Please see the project home page for documentation +// code.google.com/p/high-concurrency-btree + +#define _FILE_OFFSET_BITS 64 +#define _LARGEFILE64_SOURCE + +#ifdef linux +#define _GNU_SOURCE +#include +#include +#include +#endif + +#ifdef unix +#include +#include +#include +#include +#include +#include +#include +#include +#include +#else +#define WIN32_LEAN_AND_MEAN +#include +#include +#include +#include +#include +#include +#include +#endif + +#include +#include +#include + +typedef unsigned long long uid; +typedef unsigned long long logseqno; + +#ifndef unix +typedef unsigned long long off64_t; +typedef unsigned short ushort; +typedef unsigned int uint; +#endif + +#define BT_ro 0x6f72 // ro +#define BT_rw 0x7772 // rw + +#define BT_maxbits 26 // maximum page size in bits +#define BT_minbits 9 // minimum page size in bits +#define BT_minpage (1 << BT_minbits) // minimum page size +#define BT_maxpage (1 << BT_maxbits) // maximum page size + +// BTree page number constants +#define ALLOC_page 0 // allocation page +#define ROOT_page 1 // root of the btree +#define LATCH_page 2 // first page of latches + +#define SEG_bits 16 // number of leaf pages in a segment in bits +#define MIN_seg 32 // initial number of mapping segments + +// Number of levels to create in a new BTree +#define MIN_lvl 2 + +/* +There are six lock types for each node in four independent sets: +1. (set 1) AccessIntent: Sharable. Going to Read the node. Incompatible with NodeDelete. +2. (set 1) NodeDelete: Exclusive. About to release the node. Incompatible with AccessIntent. +3. (set 2) ReadLock: Sharable. Read the node. Incompatible with WriteLock. +4. (set 2) WriteLock: Exclusive. Modify the node. Incompatible with ReadLock and other WriteLocks. +5. (set 3) ParentModification: Exclusive. Change the node's parent keys. Incompatible with another ParentModification. +6. (set 4) LinkModification: Exclusive. Update of a node's left link is underway. Incompatible with another LinkModification. +*/ + +typedef enum{ + BtLockAccess = 1, + BtLockDelete = 2, + BtLockRead = 4, + BtLockWrite = 8, + BtLockParent = 16, + BtLockLink = 32 +} BtLock; + +typedef struct { + union { + struct { + volatile unsigned char xcl[1]; + volatile unsigned char filler; + volatile ushort waiters[1]; + } bits[1]; + uint value[1]; + }; +} MutexLatch; + +// definition for reader/writer reentrant lock implementation + +typedef struct { + MutexLatch xcl[1]; + MutexLatch wrt[1]; + ushort readers; // number of readers holding lock +#ifdef DEBUG + ushort line; // owner source line number +#endif + ushort dup; // re-entrant lock count + pid_t tid; // owner pid +} RWLock; + +// hash table entries + +typedef struct { + MutexLatch latch[1]; + uint entry; // Latch table entry at head of chain +} BtHashEntry; + +// latch manager table structure + +typedef struct { + uid page_no; // latch set page number + MutexLatch modify[1]; // modify entry lite latch + RWLock readwr[1]; // read/write page lock + RWLock access[1]; // Access Intent/Page delete + RWLock parent[1]; // Posting of fence key in parent + RWLock link[1]; // left link update in progress + uint split; // right split page atomic insert + uint next; // next entry in hash table chain + uint prev; // prev entry in hash table chain + uint pin; // number of accessing threads +} BtLatchSet; + +// Define the length of the page record numbers + +#define BtId 6 + +// Page key slot definition. + +// Keys are marked dead, but remain on the page until +// it cleanup is called. The fence key (highest key) for +// a leaf page is always present, even after cleanup. + +// Slot types + +// In addition to the Unique keys that occupy slots +// there are Librarian and Duplicate key +// slots occupying the key slot array. + +// The Librarian slots are dead keys that +// serve as filler, available to add new Unique +// or Dup slots that are inserted into the B-tree. + +// The Duplicate slots have had their key bytes extended +// by 6 bytes to contain a binary duplicate key uniqueifier. + +typedef enum { + Unique, + Update, + Librarian, + Duplicate, + Delete +} BtSlotType; + +typedef struct { + uint off:BT_maxbits; // page offset for key start + uint type:3; // type of slot + uint dead:1; // set for deleted slot +} BtSlot; + +// The key structure occupies space at the upper end of +// each page. It's a length byte followed by the key +// bytes. + +typedef struct { + unsigned char len; // this can be changed to a ushort or uint + unsigned char key[0]; +} BtKey; + +// the value structure also occupies space at the upper +// end of the page. Each key is immediately followed by a value. + +typedef struct { + unsigned char len; // this can be changed to a ushort or uint + unsigned char value[0]; +} BtVal; + +#define BT_maxkey 255 // maximum number of bytes in a key +#define BT_keyarray (BT_maxkey + sizeof(BtKey)) + +// The first part of an index page. +// It is immediately followed +// by the BtSlot array of keys. + +typedef struct BtPage_ { + uint cnt; // count of keys in page + uint act; // count of active keys + uint min; // next key/value offset + uint fence; // page fence key offset + uint garbage; // page garbage in bytes + unsigned char lvl; // level of page, zero = leaf + unsigned char free; // page is on the free chain + unsigned char kill; // page is being deleted + unsigned char nopromote; // page is being constructed + uid right, left; // page numbers to right and left +} *BtPage; + +// The loadpage interface object + +typedef struct { + BtPage page; // current page pointer + BtLatchSet *latch; // current page latch set +} BtPageSet; + +// structure for latch manager on shared ALLOC_page + +typedef struct { + uid allocpage; // page number of first available page + uid freechain; // head of free page_nos chain + uid leafchain; // head of leaf page_nos chain + uid leaf_page; // page number of leftmost leaf + uid rightleaf; // page number of rightmost leaf + uid leafpromote; // next leaf page to try promotion + unsigned long long leafpages; // number of active leaf pages + unsigned long long upperpages; // number of active upper pages + unsigned char leaf_xtra; // leaf page size in xtra bits + unsigned char page_bits; // base page size in bits + uint nlatchpage; // size of buffer pool & latchsets + uint latchtotal; // number of page latch entries + uint latchvictim; // next latch entry to test for pin + uint latchhash; // number of latch hash table slots + MutexLatch lock[1]; // allocation area lite latch + MutexLatch promote[1]; // promotion lite latch +} BtPageZero; + +// The object structure for Btree access + +typedef struct { + uint page_size; // base page size + uint page_bits; // base page size in bits + uint leaf_xtra; // leaf xtra bits +#ifdef unix + int idx; +#else + HANDLE idx; +#endif + BtPageZero *pagezero; // mapped allocation page + BtHashEntry *hashtable; // the buffer pool hash table entries + BtLatchSet *latchsets; // mapped latch set from buffer pool + uint maxleaves; // leaf page count to begin promote + int err; // last error + int line; // last error line no + int found; // number of keys found by delete + int type; // type of LSM tree 0=cache, 1=main + uint maxseg; // max number of memory mapped segments + uint segments; // number of memory mapped segments in use + MutexLatch maps[1]; // segment table mutex + unsigned char **pages; // memory mapped segments of b-tree +} BtMgr; + +typedef struct { + BtMgr *mgr; // buffer manager for entire process + BtMgr *main; // buffer manager for main btree + pid_t tid; // thread-id of thread + BtPageSet cacheset[1]; // cached page frame for cache btree + BtPageSet mainset[1]; // cached page frame for main btree + uint cacheslot; // slot number in cacheset + uint mainslot; // slot number in mainset + ushort phase; // 1 = main btree 0 = cache btree 2 = both + BtSlot *cachenode; + BtSlot *mainnode; + BtKey *cachekey; + BtKey *mainkey; + BtVal *cacheval; + BtVal *mainval; +} BtDb; + +typedef struct { + uint entry:31; // latch table entry number + uint reuse:1; // reused previous page + uint slot; // slot on page + uint src; // source slot +} AtomicTxn; + +// Catastrophic errors + +typedef enum { + BTERR_ok = 0, + BTERR_struct, + BTERR_ovflw, + BTERR_lock, + BTERR_map, + BTERR_read, + BTERR_wrt, + BTERR_atomic +} BTERR; + +// B-Tree functions + +extern void bt_close (BtDb *bt); +extern BtDb *bt_open (BtMgr *mgr, BtMgr *main); +extern BTERR bt_writepage (BtMgr *mgr, BtPage page, uid page_no, uint leaf); +extern void bt_lockpage(BtLock mode, BtLatchSet *latch, pid_t tid, uint line); +extern void bt_unlockpage(BtLock mode, BtLatchSet *latch, uint line); +extern BTERR bt_insertkey (BtMgr *mgr, unsigned char *key, uint len, uint lvl, void *value, uint vallen, BtSlotType type); +extern BTERR bt_deletekey (BtMgr *mgr, unsigned char *key, uint len, uint lvl); + +extern int bt_findkey (BtDb *db, unsigned char *key, uint keylen, unsigned char *value, uint valmax); + +extern BTERR bt_startkey (BtDb *db, unsigned char *key, uint len); +extern BTERR bt_nextkey (BtDb *bt); + +extern uint bt_lastkey (BtDb *bt); +extern uint bt_prevkey (BtDb *bt); + +// manager functions +extern BtMgr *bt_mgr (char *name, uint bits, uint leaf_xtra, uint poolsize); +extern void bt_mgrclose (BtMgr *mgr); + +// atomic transaction functions +BTERR bt_atomicexec(BtMgr *mgr, BtPage source, uint count, pid_t tid); +BTERR bt_promote (BtDb *bt); + +// The page is allocated from low and hi ends. +// The key slots are allocated from the bottom, +// while the text and value of the key +// are allocated from the top. When the two +// areas meet, the page is split into two. + +// A key consists of a length byte, two bytes of +// index number (0 - 65535), and up to 253 bytes +// of key value. + +// Associated with each key is a value byte string +// containing any value desired. + +// The b-tree root is always located at page 1. +// The first leaf page of level zero is always +// located on page 2. + +// The b-tree pages are linked with next +// pointers to facilitate enumerators, +// and provide for concurrency. + +// When to root page fills, it is split in two and +// the tree height is raised by a new root at page +// one with two keys. + +// Deleted keys are marked with a dead bit until +// page cleanup. The fence key for a leaf node is +// always present + +// To achieve maximum concurrency one page is locked at a time +// as the tree is traversed to find leaf key in question. The right +// page numbers are used in cases where the page is being split, +// or consolidated. + +// Page 0 is dedicated to lock for new page extensions, +// and chains empty pages together for reuse. It also +// contains the latch manager hash table. + +// The ParentModification lock on a node is obtained to serialize posting +// or changing the fence key for a node. + +// Empty pages are chained together through the ALLOC page and reused. + +// Access macros to address slot and key values from the page +// Page slots use 1 based indexing. + +#define slotptr(page, slot) (((BtSlot *)(page+1)) + ((slot)-1)) +#define keyptr(page, slot) ((BtKey*)((unsigned char*)(page) + slotptr(page, slot)->off)) +#define valptr(page, slot) ((BtVal*)(keyptr(page,slot)->key + keyptr(page,slot)->len)) +#define fenceptr(page) ((BtKey*)((unsigned char*)(page) + page->fence)) + +void bt_putid(unsigned char *dest, uid id) +{ +int i = BtId; + + while( i-- ) + dest[i] = (unsigned char)id, id >>= 8; +} + +uid bt_getid(unsigned char *src) +{ +uid id = 0; +int i; + + for( i = 0; i < BtId; i++ ) + id <<= 8, id |= *src++; + + return id; +} + +// lite weight spin lock Latch Manager + +pid_t sys_gettid () +{ + return syscall(SYS_gettid); +} + +int sys_futex(void *addr1, int op, int val1, struct timespec *timeout, void *addr2, int val3) +{ + return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3); +} + +void bt_mutexlock(MutexLatch *latch) +{ +uint idx, waited = 0; +MutexLatch prev[1]; + + while( 1 ) { + for( idx = 0; idx < 100; idx++ ) { + *prev->value = __sync_fetch_and_or (latch->value, 1); + if( !*prev->bits->xcl ) { + if( waited ) + __sync_fetch_and_sub (latch->bits->waiters, 1); + return; + } + } + + if( !waited ) { + __sync_fetch_and_add (latch->bits->waiters, 1); + *prev->bits->waiters += 1; + waited++; + } + + sys_futex (latch->value, FUTEX_WAIT_PRIVATE, *prev->value, NULL, NULL, 0); + } +} + +int bt_mutextry(MutexLatch *latch) +{ + return !__sync_lock_test_and_set (latch->bits->xcl, 1); +} + +void bt_releasemutex(MutexLatch *latch) +{ +MutexLatch prev[1]; + + *prev->value = __sync_fetch_and_and (latch->value, 0xffff0000); + + if( *prev->bits->waiters ) + sys_futex( latch->value, FUTEX_WAKE_PRIVATE, 1, NULL, NULL, 0 ); +} + +// reader/writer lock implementation + +void WriteLock (RWLock *lock, pid_t tid, uint line) +{ + if( tid && lock->tid == tid ) { + lock->dup++; + return; + } + bt_mutexlock (lock->xcl); + bt_mutexlock (lock->wrt); + bt_releasemutex (lock->xcl); + lock->tid = tid; +#ifdef DEBUG + lock->line = line; +#endif +} + +void WriteRelease (RWLock *lock) +{ + if( lock->dup ) { + lock->dup--; + return; + } + lock->tid = 0; + bt_releasemutex (lock->wrt); +} + +void ReadLock (RWLock *lock) +{ + bt_mutexlock (lock->xcl); + + if( !__sync_fetch_and_add (&lock->readers, 1) ) + bt_mutexlock (lock->wrt); + + bt_releasemutex (lock->xcl); +} + +void ReadRelease (RWLock *lock) +{ + if( __sync_fetch_and_sub (&lock->readers, 1) == 1 ) + bt_releasemutex (lock->wrt); +} + +// read page into buffer pool from permanent location in Btree file + +BTERR bt_readpage (BtMgr *mgr, BtPage page, uid page_no, uint leaf) +{ +uint page_size = mgr->page_size; + + if( leaf ) + page_size <<= mgr->leaf_xtra; + + if( pread(mgr->idx, page, page_size, page_no << mgr->page_bits) < page_size ) + return mgr->err = BTERR_read; + + return 0; +} + +// write page to location in Btree file + +BTERR bt_writepage (BtMgr *mgr, BtPage page, uid page_no, uint leaf) +{ +uint page_size = mgr->page_size; + + if( leaf ) + page_size <<= mgr->leaf_xtra; + + if( pwrite(mgr->idx, page, page_size, page_no << mgr->page_bits) < page_size ) + return mgr->err = BTERR_wrt; + + return 0; +} + +// decrement pin count + +void bt_unpinlatch (BtLatchSet *latch) +{ + bt_mutexlock(latch->modify); + latch->pin--; + bt_releasemutex(latch->modify); +} + +// return the btree cached page address + +BtPage bt_mappage (BtMgr *mgr, BtLatchSet *latch) +{ +uint segment = latch->page_no >> SEG_bits; +int flag = PROT_READ | PROT_WRITE; +uid mask = (uid)1 << SEG_bits; +BtPage page; + + bt_mutexlock (mgr->maps); + mask--; + + while( 1 ) { + if( segment < mgr->segments ) { + page = (BtPage)(mgr->pages[segment] + ((latch->page_no & mask) << mgr->page_bits)); + + bt_releasemutex (mgr->maps); + return page; + } + + if( mgr->segments < mgr->maxseg ) { + mgr->pages[mgr->segments] = mmap (0, (uid)mgr->page_size << SEG_bits, flag, MAP_SHARED, mgr->idx, (uid)mgr->segments << mgr->page_bits << SEG_bits); + mgr->segments++; + continue; + } + + mgr->maxseg <<= 1; + mgr->pages = realloc (mgr->pages, mgr->maxseg * sizeof(void *)); + } +} + +// return next available latch entry +// and with latch entry locked + +uint bt_availnext (BtMgr *mgr) +{ +BtLatchSet *latch; +uint entry; + + while( 1 ) { +#ifdef unix + entry = __sync_fetch_and_add (&mgr->pagezero->latchvictim, 1) + 1; +#else + entry = _InterlockedIncrement (&mgr->pagezero->latchvictim); +#endif + entry %= mgr->pagezero->latchtotal; + + if( !entry ) + continue; + + latch = mgr->latchsets + entry; + + if( !bt_mutextry(latch->modify) ) + continue; + + // return this entry if it is not pinned + + if( !latch->pin ) + return entry; + + bt_releasemutex(latch->modify); + } +} + +// pin latch in latch pool + +BtLatchSet *bt_pinlatch (BtMgr *mgr, uid page_no) +{ +uint hashidx = page_no % mgr->pagezero->latchhash; +uint entry, oldidx; +BtLatchSet *latch; +BtPage page; + + // try to find our entry + + bt_mutexlock(mgr->hashtable[hashidx].latch); + + if( entry = mgr->hashtable[hashidx].entry ) do + { + latch = mgr->latchsets + entry; + + if( page_no == latch->page_no ) + break; + } while( entry = latch->next ); + + // found our entry: increment pin + + if( entry ) { + latch = mgr->latchsets + entry; + bt_mutexlock(latch->modify); + latch->pin++; + bt_releasemutex(latch->modify); + bt_releasemutex(mgr->hashtable[hashidx].latch); + return latch; + } + + // find and reuse unpinned entry + +trynext: + entry = bt_availnext (mgr); + latch = mgr->latchsets + entry; + oldidx = latch->page_no % mgr->pagezero->latchhash; + + // skip over this entry if latch not available + + if( latch->page_no ) + if( oldidx != hashidx ) + if( !bt_mutextry (mgr->hashtable[oldidx].latch) ) { + bt_releasemutex(latch->modify); + goto trynext; + } + + // if latch is on a different hash chain + // unlink from the old page_no chain + + if( latch->page_no ) + if( oldidx != hashidx ) { + if( latch->prev ) + mgr->latchsets[latch->prev].next = latch->next; + else + mgr->hashtable[oldidx].entry = latch->next; + + if( latch->next ) + mgr->latchsets[latch->next].prev = latch->prev; + + bt_releasemutex (mgr->hashtable[oldidx].latch); + } + + // link page as head of hash table chain + // if this is a never before used entry, + // or it was previously on a different + // hash table chain. Otherwise, just + // leave it in its current hash table + // chain position. + + if( !latch->page_no || hashidx != oldidx ) { + if( latch->next = mgr->hashtable[hashidx].entry ) + mgr->latchsets[latch->next].prev = entry; + + mgr->hashtable[hashidx].entry = entry; + latch->prev = 0; + } + + // fill in latch structure + + latch->page_no = page_no; + latch->pin = 1; + + bt_releasemutex (latch->modify); + bt_releasemutex (mgr->hashtable[hashidx].latch); + return latch; +} + +void bt_mgrclose (BtMgr *mgr) +{ +char *name = mgr->type ? "Main" : "Cache"; +BtLatchSet *latch; +uint num = 0; +BtPage page; +uint entry; + + // flush previously written dirty pages + // and write recovery buffer to disk + + fdatasync (mgr->idx); + +#ifdef unix + while( mgr->segments ) + munmap (mgr->pages[--mgr->segments], (uid)mgr->page_size << SEG_bits); +#else + while( mgr->segments ) { + FlushViewOfFile(mgr->pages[--mgr->segments], 0); + UnmapViewOfFile(mgr->pages[mgr->Segments]); + } +#endif +#ifdef unix + close (mgr->idx); + free (mgr); +#else + FlushFileBuffers(mgr->idx); + CloseHandle(mgr->idx); + GlobalFree (mgr); +#endif +} + +// close and release memory + +void bt_close (BtDb *bt) +{ + free (bt); +} + +void bt_initpage (BtMgr *mgr, BtPage page, uid leaf_page_no, uint lvl) +{ +BtSlot *node = slotptr(page, 1); +unsigned char value[BtId]; +uid page_no; +BtKey* key; +BtVal *val; + + page_no = lvl ? ROOT_page : leaf_page_no; + node->off = mgr->page_size; + + if( !lvl ) + node->off <<= mgr->leaf_xtra; + + node->off -= 3 + (lvl ? BtId + sizeof(BtVal): sizeof(BtVal)); + node->type = Librarian; + node++->dead = 1; + + node->off = node[-1].off; + key = keyptr(page, 2); + key = keyptr(page, 1); + key->len = 2; // create stopper key + key->key[0] = 0xff; + key->key[1] = 0xff; + + bt_putid(value, leaf_page_no); + val = valptr(page, 1); + val->len = lvl ? BtId : 0; + memcpy (val->value, value, val->len); + + page->min = node->off; + page->lvl = lvl; + page->cnt = 2; + page->act = 1; + + if( bt_writepage (mgr, page, page_no, !lvl) ) { + fprintf (stderr, "Unable to create btree page %d\n", page_no); + exit(0); + } +} + +// open/create new btree buffer manager + +// call with file_name, BT_openmode, bits in page size (e.g. 16), +// extra bits for leaves (e.g. 4) size of latch pool (e.g. 500) + +BtMgr *bt_mgr (char *name, uint pagebits, uint leafxtra, uint nodemax) +{ +uint lvl, attr, last, slot, idx, blk; +int flag, initit = 0; +BtPageZero *pagezero; +BtLatchSet *latch; +uid leaf_page; +off64_t size; +BtPage page; +uint amt[1]; +BtMgr* mgr; + + // determine sanity of page size and buffer pool + + if( leafxtra | pagebits ) + if( leafxtra + pagebits > BT_maxbits ) + fprintf (stderr, "pagebits + leafxtra > maxbits\n"), exit(1); + + if( pagebits ) + if( pagebits < BT_minbits ) + fprintf (stderr, "pagebits < minbits\n"), exit(1); + +#ifdef unix + mgr = calloc (1, sizeof(BtMgr)); + + mgr->idx = open ((char*)name, O_RDWR | O_CREAT, 0666); + + if( mgr->idx == -1 ) { + fprintf (stderr, "Unable to create/open btree file %s\n", name); + return free(mgr), NULL; + } +#else + mgr = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, sizeof(BtMgr)); + attr = FILE_ATTRIBUTE_NORMAL; + mgr->idx = CreateFile(name, GENERIC_READ| GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, attr, NULL); + + if( mgr->idx == INVALID_HANDLE_VALUE ) { + fprintf (stderr, "Unable to create/open btree file %s\n", name); + return GlobalFree(mgr), NULL; + } +#endif + +#ifdef unix + pagezero = valloc (BT_maxpage); + page = (BtPage)pagezero; + *amt = 0; + + // read minimum page size to get root info + // to support raw disk partition files + // check if page_bits == 0 on the disk. + + if( size = lseek (mgr->idx, 0L, 2) ) + if( pread(mgr->idx, pagezero, BT_minpage, 0) == BT_minpage ) + if( pagezero->page_bits ) { + pagebits = pagezero->page_bits; + leafxtra = pagezero->leaf_xtra; + } else + initit = 1; + else + return free(mgr), free(pagezero), NULL; + else + initit = 1; +#else + pagezero = VirtualAlloc(NULL, BT_maxpage, MEM_COMMIT, PAGE_READWRITE); + size = GetFileSize(mgr->idx, amt); + + if( size || *amt ) { + if( !ReadFile(mgr->idx, (char *)pagezero, BT_minpage, amt, NULL) ) + return bt_mgrclose (mgr), NULL; + pagebits = pagezero->page_bits; + leafxtra = pagezero->leaf_xtra; + } else + initit = 1; +#endif + + mgr->page_size = 1 << pagebits; + mgr->page_bits = pagebits; + mgr->leaf_xtra = leafxtra; + + if( !initit ) + goto mgrlatch; + + // calculate number of latch table & hash entries + + memset (pagezero, 0, 1 << pagebits); + pagezero->nlatchpage = nodemax/16 * sizeof(BtHashEntry); + + pagezero->nlatchpage += sizeof(BtLatchSet) * nodemax + mgr->page_size - 1; + pagezero->nlatchpage >>= mgr->page_bits; + pagezero->latchtotal = nodemax; + + pagezero->latchhash = (((uid)pagezero->nlatchpage<< mgr->page_bits) - nodemax * sizeof(BtLatchSet)) / sizeof(BtHashEntry); + + // initialize an empty b-tree with alloc page, root page, leaf page + // and page(s) of latches and page pool cache + + pagezero->page_bits = mgr->page_bits; + pagezero->leaf_xtra = leafxtra; + pagezero->upperpages = 1; + pagezero->leafpages = 1; + + leaf_page = pagezero->leaf_page = pagezero->nlatchpage + LATCH_page; + + // round first leafpage up to leafxtra boundary + + if( pagezero->leaf_page & ((1 << leafxtra) - 1)) { + blk = pagezero->leaf_page; + pagezero->leaf_page |= (1 << leafxtra) - 1; + pagezero->freechain = pagezero->leaf_page++; + leaf_page = pagezero->leaf_page; + } else + blk = 0; + + pagezero->rightleaf = pagezero->leaf_page; + pagezero->allocpage = pagezero->leaf_page + (1 << leafxtra); + + if( pwrite (mgr->idx, pagezero, 1 << pagebits, 0) < 1 << pagebits) { + fprintf (stderr, "Unable to create btree page zero\n"); + return bt_mgrclose (mgr), NULL; + } + + // initialize root level 1 page + + memset (page, 0, 1 << pagebits); + bt_initpage (mgr, page, leaf_page, 1); + + // chain unused pages as first freelist + + memset (page, 0, 1 << pagebits); + + while( blk & ((1 << leafxtra) - 1) ) { + if( bt_writepage (mgr, page, blk, 0) ) { + fprintf(stderr, "unable to write initial free blk %d\r\n", blk); + exit(1); + } + page->right = blk++; + } + + // initialize first page of leaves + + memset (page, 0, 1 << pagebits); + bt_initpage (mgr, page, leaf_page, 0); + +mgrlatch: +#ifdef unix + free (pagezero); +#else + VirtualFree (pagezero, 0, MEM_RELEASE); +#endif + + // map first segment + + mgr->segments = 1; + mgr->maxseg = MIN_seg; + mgr->pages = calloc (MIN_seg, sizeof(unsigned char *)); + + flag = PROT_READ | PROT_WRITE; + mgr->pages[0] = mmap (0, (uid)mgr->page_size << SEG_bits, flag, MAP_SHARED, mgr->idx, 0); + + if( mgr->pages[0] == MAP_FAILED ) { + fprintf (stderr, "Unable to mmap pagezero btree segment, error = %d\n", errno); + return bt_mgrclose (mgr), NULL; + } + + mgr->pagezero = (BtPageZero *)mgr->pages[0]; + mlock (mgr->pagezero, mgr->page_size); + + // allocate latch pool + + mgr->latchsets = (BtLatchSet *)(mgr->pages[0] + ((uid)LATCH_page << mgr->page_bits)); + mgr->hashtable = (BtHashEntry *)(mgr->latchsets + mgr->pagezero->latchtotal); + + return mgr; +} + +// open BTree access method +// based on buffer manager + +BtDb *bt_open (BtMgr *mgr, BtMgr *main) +{ +BtDb *bt = malloc (sizeof(*bt)); + + memset (bt, 0, sizeof(*bt)); + bt->tid = sys_gettid(); + bt->main = main; + bt->mgr = mgr; + return bt; +} + +// compare two keys, return > 0, = 0, or < 0 +// =0: keys are same +// -1: key2 > key1 +// +1: key2 < key1 +// as the comparison value + +int keycmp (BtKey* key1, unsigned char *key2, uint len2) +{ +uint len1 = key1->len; +int ans; + + if( ans = memcmp (key1->key, key2, len1 > len2 ? len2 : len1) ) + return ans; + + if( len1 > len2 ) + return 1; + if( len1 < len2 ) + return -1; + + return 0; +} + +// place write, read, or parent lock on requested page_no. + +void bt_lockpage(BtLock mode, BtLatchSet *latch, pid_t tid, uint line) +{ + switch( mode ) { + case BtLockRead: + ReadLock (latch->readwr); + break; + case BtLockWrite: + WriteLock (latch->readwr, tid, line); + break; + case BtLockAccess: + ReadLock (latch->access); + break; + case BtLockDelete: + WriteLock (latch->access, tid, line); + break; + case BtLockParent: + WriteLock (latch->parent, tid, line); + break; + case BtLockLink: + WriteLock (latch->link, tid, line); + break; + } +} + +// remove write, read, or parent lock on requested page + +void bt_unlockpage(BtLock mode, BtLatchSet *latch, uint line) +{ + switch( mode ) { + case BtLockRead: + ReadRelease (latch->readwr); + break; + case BtLockWrite: + WriteRelease (latch->readwr); + break; + case BtLockAccess: + ReadRelease (latch->access); + break; + case BtLockDelete: + WriteRelease (latch->access); + break; + case BtLockParent: + WriteRelease (latch->parent); + break; + case BtLockLink: + WriteRelease (latch->link); + break; + } +} + +// allocate a new page +// return with page latched, but unlocked. +// contents is cleared for lvl > 0 + +int bt_newpage(BtMgr *mgr, BtPageSet *set, BtPage contents) +{ +uint page_size = mgr->page_size, blk; +uid *freechain; +uid page_no; + + // lock allocation page + + bt_mutexlock(mgr->pagezero->lock); + + if( contents->lvl ) { + freechain = &mgr->pagezero->freechain; + mgr->pagezero->upperpages++; + } else { + freechain = &mgr->pagezero->leafchain; + mgr->pagezero->leafpages++; + page_size <<= mgr->leaf_xtra; + } + + // use empty chain first + // else allocate new page + + if( page_no = *freechain ) { + if( set->latch = bt_pinlatch (mgr, page_no) ) + set->page = bt_mappage (mgr, set->latch); + else + return mgr->line = __LINE__, mgr->err = BTERR_struct; + + *freechain = set->page->right; + + // the page is currently nopromote and this + // will keep bt_promote out. + + // contents will replace this bit + // and pin will keep bt_promote out + + contents->nopromote = 0; + + memcpy (set->page, contents, page_size); + +// if( msync (mgr->pagezero, mgr->page_size, MS_SYNC) < 0 ) +// fprintf(stderr, "msync error %d line %d\n", errno, __LINE__); + + bt_releasemutex(mgr->pagezero->lock); + return 0; + } + + // obtain next available page number + // suitable for leaf or higher level + + page_no = mgr->pagezero->allocpage; + mgr->pagezero->allocpage += 1 << mgr->leaf_xtra; + + // keep bt_promote out of this page + + contents->nopromote = 1; + + // unlock allocation latch and + // extend file into new page. + +// if( msync (mgr->pagezero, mgr->page_size, MS_SYNC) < 0 ) +// fprintf(stderr, "msync error %d line %d\n", errno, __LINE__); + + if( bt_writepage (mgr, contents, page_no, !contents->lvl) ) + fprintf(stderr, "Write %lld error %d\n", page_no + blk, errno); + + // chain together unused non-leaf allocation + + if( contents->lvl ) { + memset (contents, 0, mgr->page_size); + + for( blk = 1; blk < 1 << mgr->leaf_xtra; blk++ ) { + if( bt_writepage (mgr, contents, page_no + blk, 0) ) + fprintf(stderr, "Write %lld error %d\n", page_no + blk, errno); + contents->right = page_no + blk; + *freechain = page_no + blk; + } + } + + bt_releasemutex(mgr->pagezero->lock); + + if( set->latch = bt_pinlatch (mgr, page_no) ) + set->page = bt_mappage (mgr, set->latch); + else + return mgr->err; + + // now pin will keep bt_promote out + + set->page->nopromote = 0; + return 0; +} + +// find slot in page for given key at a given level + +int bt_findslot (BtPage page, unsigned char *key, uint len) +{ +uint diff, higher = page->cnt, low = 1, slot; +uint good = 0; + + // make stopper key an infinite fence value + + if( page->right ) + higher++; + else + good++; + + // low is the lowest candidate. + // loop ends when they meet + + // higher is already + // tested as .ge. the passed key. + + while( diff = higher - low ) { + slot = low + ( diff >> 1 ); + if( keycmp (keyptr(page, slot), key, len) < 0 ) + low = slot + 1; + else + higher = slot, good++; + } + + // return zero if key is on right link page + + return good ? higher : 0; +} + +// find and load page at given level for given key +// leave page rd or wr locked as requested + +int bt_loadpage (BtMgr *mgr, BtPageSet *set, unsigned char *key, uint len, uint lvl, BtLock lock, pid_t tid) +{ +uid page_no = ROOT_page, prevpage_no = 0; +uint drill = 0xff, slot; +uint mode, prevmode; +BtPageSet prev[1]; +BtVal *val; +BtKey *ptr; + + // start at root of btree and drill down + + do { + if( set->latch = bt_pinlatch (mgr, page_no) ) + set->page = bt_mappage (mgr, set->latch); + else + return 0; + + if( page_no > ROOT_page ) + bt_lockpage(BtLockAccess, set->latch, tid, __LINE__); + + // release & unpin parent or left sibling page + + if( prevpage_no ) { + bt_unlockpage(prevmode, prev->latch, __LINE__); + bt_unpinlatch (prev->latch); + prevpage_no = 0; + } + + // obtain mode lock using lock coupling through AccessLock + // determine lock mode of drill level + + mode = (drill == lvl) ? lock : BtLockRead; + bt_lockpage(mode, set->latch, tid, __LINE__); + + // grab our fence key + + ptr=fenceptr(set->page); + + if( set->page->free ) + return mgr->err = BTERR_struct, mgr->line = __LINE__, 0; + + if( page_no > ROOT_page ) + bt_unlockpage(BtLockAccess, set->latch, __LINE__); + + // re-read and re-lock root after determining actual level of root + + if( set->page->lvl != drill) { + if( set->latch->page_no != ROOT_page ) + return mgr->err = BTERR_struct, mgr->line = __LINE__, 0; + + drill = set->page->lvl; + + if( lock != BtLockRead && drill == lvl ) { + bt_unlockpage(mode, set->latch, __LINE__); + bt_unpinlatch (set->latch); + continue; + } + } + + prevpage_no = set->latch->page_no; + prevmode = mode; + *prev = *set; + + // if requested key is beyond our fence, + // slide to the right + + if( keycmp (ptr, key, len) < 0 ) + if( page_no = set->page->right ) + continue; + + // if page is part of a delete operation, + // slide to the left; + + if( set->page->kill ) { + bt_lockpage(BtLockLink, set->latch, tid, __LINE__); + page_no = set->page->left; + bt_unlockpage(BtLockLink, set->latch, __LINE__); + continue; + } + + // find key on page at this level + // and descend to requested level + + if( slot = bt_findslot (set->page, key, len) ) { + if( drill == lvl ) + return slot; + + // find next non-dead slot -- the fence key if nothing else + + while( slotptr(set->page, slot)->dead ) + if( slot++ < set->page->cnt ) + continue; + else + return mgr->err = BTERR_struct, mgr->line = __LINE__, 0; + + val = valptr(set->page, slot); + + if( val->len == BtId ) + page_no = bt_getid(val->value); + else + return mgr->line = __LINE__, mgr->err = BTERR_struct, 0; + + drill--; + continue; + } + + // slide right into next page + + page_no = set->page->right; + + } while( page_no ); + + // return error on end of right chain + + mgr->line = __LINE__, mgr->err = BTERR_struct; + return 0; // return error +} + +// return page to free list +// page must be delete, link & write locked +// and have no keys pointing to it. + +void bt_freepage (BtMgr *mgr, BtPageSet *set) +{ +uid *freechain; + + // lock allocation page + + bt_mutexlock (mgr->pagezero->lock); + + if( set->page->lvl ) { + freechain = &mgr->pagezero->freechain; + mgr->pagezero->upperpages--; + } else { + freechain = &mgr->pagezero->leafchain; + mgr->pagezero->leafpages--; + } + + // store chain link + + set->page->right = *freechain; + *freechain = set->latch->page_no; + set->page->free = 1; + +// if( msync (mgr->pagezero, mgr->page_size, MS_SYNC) < 0 ) +// fprintf(stderr, "msync error %d line %d\n", errno, __LINE__); + + // unlock released page + // and unlock allocation page + + bt_unlockpage (BtLockDelete, set->latch, __LINE__); + bt_unlockpage (BtLockWrite, set->latch, __LINE__); + bt_unlockpage (BtLockLink, set->latch, __LINE__); + bt_unpinlatch (set->latch); + bt_releasemutex (mgr->pagezero->lock); +} + +// a fence key was deleted from an interiour level page +// push new fence value upwards + +BTERR bt_fixfence (BtMgr *mgr, BtPageSet *set, uint lvl) +{ +unsigned char leftkey[BT_keyarray], rightkey[BT_keyarray]; +unsigned char value[BtId]; +BtKey* ptr; +uint idx; + + // remove the old fence value + + ptr = fenceptr(set->page); + memcpy (rightkey, ptr, ptr->len + sizeof(BtKey)); + memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot)); + set->page->fence = slotptr(set->page, set->page->cnt)->off; + + // cache new fence value + + ptr = fenceptr(set->page); + memcpy (leftkey, ptr, ptr->len + sizeof(BtKey)); + + bt_lockpage (BtLockParent, set->latch, 0, __LINE__); + bt_unlockpage (BtLockWrite, set->latch, __LINE__); + + // insert new (now smaller) fence key + + bt_putid (value, set->latch->page_no); + ptr = (BtKey*)leftkey; + + if( bt_insertkey (mgr, ptr->key, ptr->len, lvl+1, value, BtId, Unique) ) + return mgr->err; + + // now delete old fence key + + ptr = (BtKey*)rightkey; + + if( bt_deletekey (mgr, ptr->key, ptr->len, lvl+1) ) + return mgr->err; + + bt_unlockpage (BtLockParent, set->latch, __LINE__); + bt_unpinlatch(set->latch); + return 0; +} + +// root has a single child +// collapse a level from the tree + +BTERR bt_collapseroot (BtMgr *mgr, BtPageSet *root) +{ +BtPageSet child[1]; +uid page_no; +BtVal *val; +uint idx; + + // find the child entry and promote as new root contents + + do { + for( idx = 0; idx++ < root->page->cnt; ) + if( !slotptr(root->page, idx)->dead ) + break; + + val = valptr(root->page, idx); + + if( val->len == BtId ) + page_no = bt_getid (valptr(root->page, idx)->value); + else + return mgr->line = __LINE__, mgr->err = BTERR_struct; + + if( child->latch = bt_pinlatch (mgr, page_no) ) + child->page = bt_mappage (mgr, child->latch); + else + return mgr->err; + + bt_lockpage (BtLockDelete, child->latch, 0, __LINE__); + bt_lockpage (BtLockWrite, child->latch, 0, __LINE__); + + memcpy (root->page, child->page, mgr->page_size); + bt_freepage (mgr, child); + + } while( root->page->lvl > 1 && root->page->act == 1 ); + + bt_unlockpage (BtLockWrite, root->latch, __LINE__); + bt_unpinlatch (root->latch); + return 0; +} + +// delete a page and manage key +// call with page writelocked + +// returns with page unpinned +// from the page pool. + +BTERR bt_deletepage (BtMgr *mgr, BtPageSet *set, uint lvl) +{ +unsigned char higherfence[BT_keyarray], lowerfence[BT_keyarray]; +uint page_size = mgr->page_size, kill; +BtPageSet right[1], temp[1]; +unsigned char value[BtId]; +uid page_no, right2; +BtKey *ptr; + + if( !lvl ) + page_size <<= mgr->leaf_xtra; + + // cache original copy of original fence key + // that is going to be deleted. + + ptr = fenceptr(set->page); + memcpy (lowerfence, ptr, ptr->len + sizeof(BtKey)); + + // pin and lock our right page + + page_no = set->page->right; + + if( right->latch = bt_pinlatch (mgr, page_no) ) + right->page = bt_mappage (mgr, right->latch); + else + return 0; + + bt_lockpage (BtLockWrite, right->latch, 0, __LINE__); + + if( right->page->kill || set->page->kill ) + return mgr->line = __LINE__, mgr->err = BTERR_struct; + + // pull contents of right sibling over our empty page + // preserving our left page number, and its right page number. + + bt_lockpage (BtLockLink, set->latch, 0, __LINE__); + page_no = set->page->left; + memcpy (set->page, right->page, page_size); + set->page->left = page_no; + bt_unlockpage (BtLockLink, set->latch, __LINE__); + + // fix left link from far right page + + if( right2 = set->page->right ) { + if( temp->latch = bt_pinlatch (mgr, right2) ) + temp->page = bt_mappage (mgr, temp->latch); + else + return 0; + + bt_lockpage (BtLockAccess, temp->latch, 0, __LINE__); + bt_lockpage(BtLockLink, temp->latch, 0, __LINE__); + temp->page->left = set->latch->page_no; + bt_unlockpage(BtLockLink, temp->latch, __LINE__); + bt_unlockpage(BtLockAccess, temp->latch, __LINE__); + bt_unpinlatch (temp->latch); + } else if( !lvl ) { // our page is now rightmost leaf + bt_mutexlock (mgr->pagezero->lock); + mgr->pagezero->rightleaf = set->latch->page_no; + bt_releasemutex(mgr->pagezero->lock); + } + + ptr = fenceptr(set->page); + memcpy (higherfence, ptr, ptr->len + sizeof(BtKey)); + + // mark right page as being deleted and release lock + // keep lock on parent modification. + + right->page->kill = 1; + bt_lockpage (BtLockParent, right->latch, 0, __LINE__); + bt_unlockpage (BtLockWrite, right->latch, __LINE__); + + bt_lockpage (BtLockParent, set->latch, 0, __LINE__); + bt_unlockpage (BtLockWrite, set->latch, __LINE__); + + // redirect the new higher key directly to our new node + + ptr = (BtKey *)higherfence; + bt_putid (value, set->latch->page_no); + + if( bt_insertkey (mgr, ptr->key, ptr->len, lvl+1, value, BtId, Update) ) + return mgr->err; + + // delete our original fence key in parent + + ptr = (BtKey *)lowerfence; + + if( bt_deletekey (mgr, ptr->key, ptr->len, lvl+1) ) + return mgr->err; + + // wait for all access to drain away with delete lock, + // then obtain write lock to right node and free it. + + bt_lockpage (BtLockDelete, right->latch, 0, __LINE__); + bt_lockpage (BtLockWrite, right->latch, 0, __LINE__); + bt_lockpage (BtLockLink, right->latch, 0, __LINE__); + bt_unlockpage (BtLockParent, right->latch, __LINE__); + bt_freepage (mgr, right); + + // release parent lock to our node + + bt_unlockpage (BtLockParent, set->latch, __LINE__); + bt_unpinlatch (set->latch); + return 0; +} + +// find and delete key on page by marking delete flag bit +// if page becomes empty, delete it from the btree + +BTERR bt_deletekey (BtMgr *mgr, unsigned char *key, uint len, uint lvl) +{ +uint slot, idx, found, fence; +BtPageSet set[1]; +BtSlot *node; +BtKey *ptr; +BtVal *val; + + if( slot = bt_loadpage (mgr, set, key, len, lvl, BtLockWrite, 0) ) { + node = slotptr(set->page, slot); + ptr = keyptr(set->page, slot); + } else + return mgr->err; + + // if librarian slot, advance to real slot + + if( node->type == Librarian ) { + ptr = keyptr(set->page, ++slot); + node = slotptr(set->page, slot); + } + + fence = slot == set->page->cnt; + + // delete the key, ignore request if already dead + + if( found = !keycmp (ptr, key, len) ) + if( found = node->dead == 0 ) { + val = valptr(set->page,slot); + set->page->garbage += ptr->len + val->len + sizeof(BtKey) + sizeof(BtVal); + set->page->act--; + node->dead = 1; + + // collapse empty slots beneath the fence + // on interiour nodes + + if( lvl ) + while( idx = set->page->cnt - 1 ) + if( slotptr(set->page, idx)->dead ) { + *slotptr(set->page, idx) = *slotptr(set->page, idx + 1); + memset (slotptr(set->page, set->page->cnt--), 0, sizeof(BtSlot)); + } else + break; + } + + if( !found ) + return 0; + + // did we delete a fence key in an upper level? + + if( lvl && set->page->act && fence ) + return bt_fixfence (mgr, set, lvl); + + // do we need to collapse root? + + if( lvl > 1 && set->latch->page_no == ROOT_page && set->page->act == 1 ) + return bt_collapseroot (mgr, set); + + // delete empty page + + if( !set->page->act ) + return bt_deletepage (mgr, set, set->page->lvl); + + bt_unlockpage(BtLockWrite, set->latch, __LINE__); + bt_unpinlatch (set->latch); + return 0; +} + +// check page for space available, +// clean if necessary and return +// 0 - page needs splitting +// >0 new slot value + +uint bt_cleanpage(BtMgr *mgr, BtPageSet *set, uint keylen, uint slot, uint vallen) +{ +uint page_size = mgr->page_size; +BtPage page = set->page, frame; +uint cnt = 0, idx = 0; +uint max = page->cnt; +uint newslot = max; +BtKey *key; +BtVal *val; + + if( !set->page->lvl ) + page_size <<= mgr->leaf_xtra; + + if( page->min >= (max+2) * sizeof(BtSlot) + sizeof(*page) + keylen + sizeof(BtKey) + vallen + sizeof(BtVal)) + return slot; + + // skip cleanup and proceed to split + // if there's not enough garbage + // to bother with. + + if( page->garbage < page_size / 5 ) + return 0; + + frame = malloc (page_size); + memcpy (frame, page, page_size); + + // skip page info and set rest of page to zero + + memset (page+1, 0, page_size - sizeof(*page)); + + page->min = page_size; + page->garbage = 0; + page->act = 0; + + // clean up page first by + // removing dead keys + + while( cnt++ < max ) { + if( cnt == slot ) + newslot = idx + 2; + + if( cnt < max || frame->lvl ) + if( slotptr(frame,cnt)->dead ) + continue; + + // copy the value across + + val = valptr(frame, cnt); + page->min -= val->len + sizeof(BtVal); + memcpy ((unsigned char *)page + page->min, val, val->len + sizeof(BtVal)); + + // copy the key across + + key = keyptr(frame, cnt); + page->min -= key->len + sizeof(BtKey); + memcpy ((unsigned char *)page + page->min, key, key->len + sizeof(BtKey)); + + // make a librarian slot + + slotptr(page, ++idx)->off = page->min; + slotptr(page, idx)->type = Librarian; + slotptr(page, idx)->dead = 1; + + // set up the slot + + slotptr(page, ++idx)->off = page->min; + slotptr(page, idx)->type = slotptr(frame, cnt)->type; + + if( !(slotptr(page, idx)->dead = slotptr(frame, cnt)->dead) ) + page->act++; + } + + page->fence = page->min; + page->cnt = idx; + free (frame); + + // see if page has enough space now, or does it need splitting? + + if( page->min >= (idx+2) * sizeof(BtSlot) + sizeof(*page) + keylen + sizeof(BtKey) + vallen + sizeof(BtVal) ) + return newslot; + + return 0; +} + +// split the root and raise the height of the btree + +BTERR bt_splitroot(BtMgr *mgr, BtPageSet *root, BtLatchSet *right) +{ +unsigned char leftkey[BT_keyarray]; +uint nxt = mgr->page_size; +unsigned char value[BtId]; +BtPage frame, page; +BtPageSet left[1]; +uid left_page_no; +BtKey *ptr; +BtVal *val; + + frame = malloc (mgr->page_size); + memcpy (frame, root->page, mgr->page_size); + + // save left page fence key for new root + + ptr = fenceptr(root->page); + memcpy (leftkey, ptr, ptr->len + sizeof(BtKey)); + + // Obtain an empty page to use, and copy the current + // root contents into it, e.g. lower keys + + if( bt_newpage(mgr, left, frame) ) + return mgr->err; + + left_page_no = left->latch->page_no; + bt_unpinlatch (left->latch); + free (frame); + + // left link the pages together + + page = bt_mappage (mgr, right); + page->left = left_page_no; + + // preserve the page info at the bottom + // of higher keys and set rest to zero + + memset(root->page+1, 0, mgr->page_size - sizeof(*root->page)); + + // insert stopper key at top of newroot page + // and increase the root height + + nxt -= BtId + sizeof(BtVal); + bt_putid (value, right->page_no); + val = (BtVal *)((unsigned char *)root->page + nxt); + memcpy (val->value, value, BtId); + val->len = BtId; + + nxt -= 2 + sizeof(BtKey); + page->fence = nxt; + + slotptr(root->page, 2)->off = nxt; + ptr = (BtKey *)((unsigned char *)root->page + nxt); + ptr->len = 2; + ptr->key[0] = 0xff; + ptr->key[1] = 0xff; + + // insert lower keys page fence key on newroot page as first key + + nxt -= BtId + sizeof(BtVal); + bt_putid (value, left_page_no); + val = (BtVal *)((unsigned char *)root->page + nxt); + memcpy (val->value, value, BtId); + val->len = BtId; + + ptr = (BtKey *)leftkey; + nxt -= ptr->len + sizeof(BtKey); + slotptr(root->page, 1)->off = nxt; + memcpy ((unsigned char *)root->page + nxt, leftkey, ptr->len + sizeof(BtKey)); + + root->page->right = 0; + root->page->min = nxt; // reset lowest used offset and key count + root->page->cnt = 2; + root->page->act = 2; + root->page->lvl++; + + // release and unpin root pages + + bt_unlockpage(BtLockWrite, root->latch, __LINE__); + bt_unpinlatch (root->latch); + + bt_unpinlatch (right); + return 0; +} + +// split already locked full node +// leave it locked. +// return pool entry for new right +// page, pinned & unlocked + +uint bt_splitpage (BtMgr *mgr, BtPageSet *set, uint linkleft) +{ +uint page_size = mgr->page_size; +BtPageSet right[1], temp[1]; +uint cnt = 0, idx = 0, max; +uint lvl = set->page->lvl; +BtPage frame; +BtKey *key; +BtVal *val; +uid right2; +uint entry; +uint prev; + + if( !set->page->lvl ) + page_size <<= mgr->leaf_xtra; + + // split higher half of keys to frame + + frame = malloc (page_size); + memset (frame, 0, page_size); + frame->min = page_size; + max = set->page->cnt; + cnt = max / 2; + idx = 0; + + while( cnt++ < max ) { + if( cnt < max || set->page->lvl ) + if( slotptr(set->page, cnt)->dead ) + continue; + + val = valptr(set->page, cnt); + frame->min -= val->len + sizeof(BtVal); + memcpy ((unsigned char *)frame + frame->min, val, val->len + sizeof(BtVal)); + + key = keyptr(set->page, cnt); + frame->min -= key->len + sizeof(BtKey); + memcpy ((unsigned char *)frame + frame->min, key, key->len + sizeof(BtKey)); + + // add librarian slot + + slotptr(frame, ++idx)->off = frame->min; + slotptr(frame, idx)->type = Librarian; + slotptr(frame, idx)->dead = 1; + + // add actual slot + + slotptr(frame, ++idx)->off = frame->min; + slotptr(frame, idx)->type = slotptr(set->page, cnt)->type; + + if( !(slotptr(frame, idx)->dead = slotptr(set->page, cnt)->dead) ) + frame->act++; + } + + frame->fence = frame->min; + frame->cnt = idx; + frame->lvl = lvl; + + // link right node + + if( set->latch->page_no > ROOT_page ) { + right2 = set->page->right; + frame->right = right2; + + if( linkleft ) + frame->left = set->latch->page_no; + } + + // get new free page and write higher keys to it. + + if( bt_newpage(mgr, right, frame) ) + return 0; + + // link far right's left pointer to new page + + if( linkleft && set->latch->page_no > ROOT_page ) + if( right2 ) { + if( temp->latch = bt_pinlatch (mgr, right2) ) + temp->page = bt_mappage (mgr, temp->latch); + else + return 0; + + bt_lockpage(BtLockLink, temp->latch, 0, __LINE__); + temp->page->left = right->latch->page_no; + bt_unlockpage(BtLockLink, temp->latch, __LINE__); + bt_unpinlatch (temp->latch); + } else if( !lvl ) { // page is rightmost leaf + bt_mutexlock (mgr->pagezero->lock); + mgr->pagezero->rightleaf = right->latch->page_no; + bt_releasemutex(mgr->pagezero->lock); + } + + // process lower keys + + memcpy (frame, set->page, page_size); + memset (set->page+1, 0, page_size - sizeof(*set->page)); + + set->page->min = page_size; + set->page->garbage = 0; + set->page->act = 0; + max /= 2; + cnt = 0; + idx = 0; + + // assemble page of smaller keys + + while( cnt++ < max ) { + if( slotptr(frame, cnt)->dead ) + continue; + val = valptr(frame, cnt); + set->page->min -= val->len + sizeof(BtVal); + memcpy ((unsigned char *)set->page + set->page->min, val, val->len + sizeof(BtVal)); + + key = keyptr(frame, cnt); + set->page->min -= key->len + sizeof(BtKey); + memcpy ((unsigned char *)set->page + set->page->min, key, key->len + sizeof(BtKey)); + + // add librarian slot + + slotptr(set->page, ++idx)->off = set->page->min; + slotptr(set->page, idx)->type = Librarian; + slotptr(set->page, idx)->dead = 1; + + // add actual slot + + slotptr(set->page, ++idx)->off = set->page->min; + slotptr(set->page, idx)->type = slotptr(frame, cnt)->type; + set->page->act++; + } + + set->page->right = right->latch->page_no; + set->page->fence = set->page->min; + set->page->cnt = idx; + free(frame); + + entry = right->latch - mgr->latchsets; + return entry; +} + +// fix keys for newly split page +// call with both pages pinned & locked +// return unlocked and unpinned + +BTERR bt_splitkeys (BtMgr *mgr, BtPageSet *set, BtLatchSet *right) +{ +unsigned char leftkey[BT_keyarray], rightkey[BT_keyarray]; +unsigned char value[BtId]; +uint lvl = set->page->lvl; +BtPageSet temp[1]; +BtPage page; +BtKey *ptr; +uid right2; + + // if current page is the root page, split it + + if( set->latch->page_no == ROOT_page ) + return bt_splitroot (mgr, set, right); + + ptr = fenceptr(set->page); + memcpy (leftkey, ptr, ptr->len + sizeof(BtKey)); + + page = bt_mappage (mgr, right); + + ptr = fenceptr(page); + memcpy (rightkey, ptr, ptr->len + sizeof(BtKey)); + + // splice in far right page's left page_no + + if( right2 = page->right ) { + if( temp->latch = bt_pinlatch (mgr, right2) ) + temp->page = bt_mappage (mgr, temp->latch); + else + return 0; + + bt_lockpage(BtLockLink, temp->latch, 0, __LINE__); + temp->page->left = right->page_no; + bt_unlockpage(BtLockLink, temp->latch, __LINE__); + bt_unpinlatch (temp->latch); + } else if( !lvl ) { // right page is far right page + bt_mutexlock (mgr->pagezero->lock); + mgr->pagezero->rightleaf = right->page_no; + bt_releasemutex(mgr->pagezero->lock); + } + // insert new fences in their parent pages + + bt_lockpage (BtLockParent, right, 0, __LINE__); + + bt_lockpage (BtLockParent, set->latch, 0, __LINE__); + bt_unlockpage (BtLockWrite, set->latch, __LINE__); + + // insert new fence for reformulated left block of smaller keys + + bt_putid (value, set->latch->page_no); + ptr = (BtKey *)leftkey; + + if( bt_insertkey (mgr, ptr->key, ptr->len, lvl+1, value, BtId, Unique) ) + return mgr->err; + + // switch fence for right block of larger keys to new right page + + bt_putid (value, right->page_no); + ptr = (BtKey *)rightkey; + + if( bt_insertkey (mgr, ptr->key, ptr->len, lvl+1, value, BtId, Unique) ) + return mgr->err; + + bt_unlockpage (BtLockParent, set->latch, __LINE__); + bt_unpinlatch (set->latch); + + bt_unlockpage (BtLockParent, right, __LINE__); + bt_unpinlatch (right); + return 0; +} + +// install new key and value onto page +// page must already be checked for +// adequate space + +BTERR bt_insertslot (BtMgr *mgr, BtPageSet *set, uint slot, unsigned char *key,uint keylen, unsigned char *value, uint vallen, uint type) +{ +uint idx, librarian; +BtSlot *node; +BtKey *ptr; +BtVal *val; +int rate; + + // if previous slot is a librarian slot, use it + + if( slot > 1 ) + if( slotptr(set->page, slot-1)->type == Librarian ) + slot--; + + // copy value onto page + + set->page->min -= vallen + sizeof(BtVal); + val = (BtVal*)((unsigned char *)set->page + set->page->min); + memcpy (val->value, value, vallen); + val->len = vallen; + + // copy key onto page + + set->page->min -= keylen + sizeof(BtKey); + ptr = (BtKey*)((unsigned char *)set->page + set->page->min); + memcpy (ptr->key, key, keylen); + ptr->len = keylen; + + // find first empty slot at or above our insert slot + + for( idx = slot; idx < set->page->cnt; idx++ ) + if( slotptr(set->page, idx)->dead ) + break; + + // now insert key into array before slot. + + // if we're going all the way to the top, + // add as many librarian slots as + // makes sense. + + if( idx == set->page->cnt ) { + int avail = 4 * set->page->min / 5 - sizeof(*set->page) - ++set->page->cnt * sizeof(BtSlot); + + librarian = ++idx - slot; + avail /= sizeof(BtSlot); + + if( avail < 0 ) + avail = 0; + + if( librarian > avail ) + librarian = avail; + + if( librarian ) { + rate = (idx - slot) / librarian; + set->page->cnt += librarian; + idx += librarian; + } else + rate = 0; + } else + librarian = 0, rate = 0; + + // transfer slots and add librarian slots + + while( idx > slot ) { + *slotptr(set->page, idx) = *slotptr(set->page, idx-librarian-1); + + // add librarian slot per rate + + if( librarian ) + if( (idx - slot)/2 <= librarian * rate ) { + node = slotptr(set->page, --idx); + node->off = node[1].off; + node->type = Librarian; + node->dead = 1; + librarian--; + } + + --idx; + } + + set->page->act++; + + // fill in new slot + + node = slotptr(set->page, slot); + node->off = set->page->min; + node->type = type; + node->dead = 0; + return 0; +} + +// Insert new key into the btree at given level. +// either add a new key or update/add an existing one + +BTERR bt_insertkey (BtMgr *mgr, unsigned char *key, uint keylen, uint lvl, void *value, uint vallen, BtSlotType type) +{ +uint slot, idx, len, entry; +BtPageSet set[1]; +BtSlot *node; +BtKey *ptr; +BtVal *val; + + while( 1 ) { // find the page and slot for the current key + if( slot = bt_loadpage (mgr, set, key, keylen, lvl, BtLockWrite, 0) ) { + node = slotptr(set->page, slot); + ptr = keyptr(set->page, slot); + } else + return mgr->err; + + // if librarian slot == found slot, advance to real slot + + if( node->type == Librarian ) { + node = slotptr(set->page, ++slot); + ptr = keyptr(set->page, slot); + } + + // if inserting a duplicate key or unique + // key that doesn't exist on the page, + // check for adequate space on the page + // and insert the new key before slot. + + switch( type ) { + case Unique: + case Duplicate: + if( !keycmp (ptr, key, keylen) ) + break; + + if( slot = bt_cleanpage (mgr, set, keylen, slot, vallen) ) + if( bt_insertslot (mgr, set, slot, key, keylen, value, vallen, type) ) + return mgr->err; + else + goto insxit; + + if( entry = bt_splitpage (mgr, set, 1) ) + if( !bt_splitkeys (mgr, set, entry + mgr->latchsets) ) + continue; + + return mgr->err; + + case Update: + if( keycmp (ptr, key, keylen) ) + goto insxit; + + break; + } + + // if key already exists, update value and return + + val = valptr(set->page, slot); + + if( val->len >= vallen ) { + if( node->dead ) + set->page->act++; + node->type = type; + node->dead = 0; + + set->page->garbage += val->len - vallen; + val->len = vallen; + memcpy (val->value, value, vallen); + goto insxit; + } + + // new update value doesn't fit in existing value area + // make sure page has room + + if( !node->dead ) + set->page->garbage += val->len + ptr->len + sizeof(BtKey) + sizeof(BtVal); + else + set->page->act++; + + node->type = type; + node->dead = 0; + + if( slot = bt_cleanpage (mgr, set, keylen, slot, vallen) ) + break; + + if( entry = bt_splitpage (mgr, set, 1) ) + if( !bt_splitkeys (mgr, set, entry + mgr->latchsets) ) + continue; + + return mgr->err; + } + + // copy key and value onto page and update slot + + set->page->min -= vallen + sizeof(BtVal); + val = (BtVal*)((unsigned char *)set->page + set->page->min); + memcpy (val->value, value, vallen); + val->len = vallen; + + set->page->min -= keylen + sizeof(BtKey); + ptr = (BtKey*)((unsigned char *)set->page + set->page->min); + memcpy (ptr->key, key, keylen); + ptr->len = keylen; + + slotptr(set->page,slot)->off = set->page->min; + +insxit: + bt_unlockpage(BtLockWrite, set->latch, __LINE__); + bt_unpinlatch (set->latch); + return 0; +} + +// determine actual page where key is located +// return slot number + +uint bt_atomicpage (BtMgr *mgr, BtPage source, AtomicTxn *locks, uint idx, BtPageSet *set) +{ +BtKey *key = keyptr(source,locks[idx].src), *ptr; +uint slot = locks[idx].slot; +uint entry; + + if( locks[idx].reuse ) + entry = locks[idx-1].entry; + else + entry = locks[idx].entry; + + if( slot ) { + set->latch = mgr->latchsets + entry; + set->page = bt_mappage (mgr, set->latch); + return slot; + } + + // find where our key is located + // on current page or pages split on + // same page txn operations. + + do { + set->latch = mgr->latchsets + entry; + set->page = bt_mappage (mgr, set->latch); + + if( slot = bt_findslot(set->page, key->key, key->len) ) { + if( slotptr(set->page, slot)->type == Librarian ) + slot++; + if( locks[idx].reuse ) + locks[idx].entry = entry; + return slot; + } + } while( entry = set->latch->split ); + + mgr->line = __LINE__, mgr->err = BTERR_atomic; + return 0; +} + +BTERR bt_atomicinsert (BtMgr *mgr, BtPage source, AtomicTxn *locks, uint idx) +{ +BtKey *key = keyptr(source, locks[idx].src); +BtVal *val = valptr(source, locks[idx].src); +BtLatchSet *latch; +BtPageSet set[1]; +uint entry, slot; + + while( slot = bt_atomicpage (mgr, source, locks, idx, set) ) { + if( slot = bt_cleanpage(mgr, set, key->len, slot, val->len) ) { + if( bt_insertslot (mgr, set, slot, key->key, key->len, val->value, val->len, slotptr(source,locks[idx].src)->type) ) + return mgr->err; + + return 0; + } + + // split page + + if( entry = bt_splitpage (mgr, set, 0) ) + latch = mgr->latchsets + entry; + else + return mgr->err; + + // splice right page into split chain + // and WriteLock it + + bt_lockpage(BtLockWrite, latch, 0, __LINE__); + latch->split = set->latch->split; + set->latch->split = entry; + + // clear slot number for atomic page + + locks[idx].slot = 0; + } + + return mgr->line = __LINE__, mgr->err = BTERR_atomic; +} + +// perform delete from smaller btree +// insert a delete slot if not found there + +BTERR bt_atomicdelete (BtMgr *mgr, BtPage source, AtomicTxn *locks, uint idx) +{ +BtKey *key = keyptr(source, locks[idx].src); +BtLatchSet *latch; +uint slot, entry; +BtPageSet set[1]; +BtSlot *node; +BtKey *ptr; +BtVal *val; + + while( slot = bt_atomicpage (mgr, source, locks, idx, set) ) { + node = slotptr(set->page, slot); + ptr = keyptr(set->page, slot); + val = valptr(set->page, slot); + + // if slot is not found on cache btree, insert a delete slot + // otherwise ignore the request. + + if( keycmp (ptr, key->key, key->len) ) + if( !mgr->type ) + if( slot = bt_cleanpage(mgr, set, key->len, slot, 0) ) + return bt_insertslot (mgr, set, slot, key->key, key->len, NULL, 0, Delete); + else { // split page before inserting Delete slot + if( entry = bt_splitpage (mgr, set, 0) ) + latch = mgr->latchsets + entry; + else + return mgr->err; + + // splice right page into split chain + // and WriteLock it + + bt_lockpage(BtLockWrite, latch, 0, __LINE__); + latch->split = set->latch->split; + set->latch->split = entry; + + // clear slot number for atomic page + + locks[idx].slot = 0; + continue; + } + else + return 0; + + // if node is already dead, + // ignore the request. + + if( node->type == Delete || node->dead ) + return 0; + + // if main LSM btree, delete the slot + // else change to delete type. + + if( mgr->type ) { + set->page->act--; + node->dead = 1; + } else + node->type = Delete; + + __sync_fetch_and_add(&mgr->found, 1); + return 0; + } + + return mgr->line = __LINE__, mgr->err = BTERR_struct; +} + +// release master's splits from right to left + +void bt_atomicrelease (BtMgr *mgr, uint entry) +{ +BtLatchSet *latch = mgr->latchsets + entry; + + if( latch->split ) + bt_atomicrelease (mgr, latch->split); + + latch->split = 0; + bt_unlockpage(BtLockWrite, latch, __LINE__); + bt_unpinlatch(latch); +} + +int qsortcmp (BtSlot *slot1, BtSlot *slot2, BtPage page) +{ +BtKey *key1 = (BtKey *)((char *)page + slot1->off); +BtKey *key2 = (BtKey *)((char *)page + slot2->off); + + return keycmp (key1, key2->key, key2->len); +} +// atomic modification of a batch of keys. + +BTERR bt_atomictxn (BtDb *bt, BtPage source) +{ +uint src, idx, slot, samepage, entry, que = 0; +BtKey *key, *ptr, *key2; +int result = 0; +BtSlot temp[1]; +int type; + + // stable sort the list of keys into order to + // prevent deadlocks between threads. +/* + for( src = 1; src++ < source->cnt; ) { + *temp = *slotptr(source,src); + key = keyptr (source,src); + + for( idx = src; --idx; ) { + key2 = keyptr (source,idx); + if( keycmp (key, key2->key, key2->len) < 0 ) { + *slotptr(source,idx+1) = *slotptr(source,idx); + *slotptr(source,idx) = *temp; + } else + break; + } + } +*/ + qsort_r (slotptr(source,1), source->cnt, sizeof(BtSlot), (__compar_d_fn_t)qsortcmp, source); + + // perform the individual actions in the transaction + + if( bt_atomicexec (bt->mgr, source, source->cnt, bt->tid) ) + return bt->mgr->err; + + // if number of active pages + // is greater than the buffer pool + // promote page into larger btree + + if( bt->main ) + if( bt->mgr->pagezero->leafpages > bt->mgr->maxleaves ) + if( bt_promote (bt) ) + return bt->mgr->err; + + // return success + + return 0; +} + +// execute the source list of inserts/deletes + +BTERR bt_atomicexec(BtMgr *mgr, BtPage source, uint count, pid_t tid) +{ +uint slot, src, idx, samepage, entry, outidx; +BtPageSet set[1], prev[1]; +unsigned char value[BtId]; +BtLatchSet *latch; +uid right_page_no; +AtomicTxn *locks; +BtKey *key, *ptr; +BtPage page; +BtVal *val; + + locks = calloc (count, sizeof(AtomicTxn)); + memset (set, 0, sizeof(BtPageSet)); + outidx = 0; + + // Load the leaf page for each key + // group same page references with reuse bit + + for( src = 0; src++ < count; ) { + if( slotptr(source,src)->dead ) + continue; + + key = keyptr(source, src); + + // first determine if this modification falls + // on the same page as the previous modification + // note that the far right leaf page is a special case + + if( samepage = !!set->page ) + samepage = !set->page->right || keycmp (ptr, key->key, key->len) >= 0; + + if( !samepage ) + if( slot = bt_loadpage(mgr, set, key->key, key->len, 0, BtLockWrite, tid) ) + ptr = fenceptr(set->page), set->latch->split = 0; + else + return mgr->err; + else + slot = 0; + + if( slot ) + if( slotptr(set->page, slot)->type == Librarian ) + slot++; + + entry = set->latch - mgr->latchsets; + locks[outidx].reuse = samepage; + locks[outidx].entry = entry; + locks[outidx].slot = slot; + locks[outidx].src = src; + outidx++; + } + + // insert or delete each key + // process any splits or merges + // run through txn list backwards + + samepage = outidx; + + for( src = outidx; src--; ) { + if( locks[src].reuse ) + continue; + + // perform the txn operations + // from smaller to larger on + // the same page + + for( idx = src; idx < samepage; idx++ ) + switch( slotptr(source,locks[idx].src)->type ) { + case Delete: + if( bt_atomicdelete (mgr, source, locks, idx) ) + return mgr->err; + break; + + case Duplicate: + case Unique: + if( bt_atomicinsert (mgr, source, locks, idx) ) + return mgr->err; + break; + + default: + bt_atomicpage (mgr, source, locks, idx, set); + break; + } + + // after the same page operations have finished, + // process master page for splits or deletion. + + latch = prev->latch = mgr->latchsets + locks[src].entry; + prev->page = bt_mappage (mgr, prev->latch); + samepage = src; + + // pick-up all splits from master page + // each one is already pinned & WriteLocked. + + while( entry = prev->latch->split ) { + set->latch = mgr->latchsets + entry; + set->page = bt_mappage (mgr, set->latch); + + // delete empty master page by undoing its split + // (this is potentially another empty page) + // note that there are no pointers to it yet + + if( !prev->page->act ) { + set->page->left = prev->page->left; + memcpy (prev->page, set->page, mgr->page_size << mgr->leaf_xtra); + bt_lockpage (BtLockDelete, set->latch, 0, __LINE__); + bt_lockpage (BtLockLink, set->latch, 0, __LINE__); + prev->latch->split = set->latch->split; + bt_freepage (mgr, set); + continue; + } + + // remove empty split page from the split chain + // and return it to the free list. No other + // thread has its page number yet. + + if( !set->page->act ) { + prev->page->right = set->page->right; + prev->latch->split = set->latch->split; + + bt_lockpage (BtLockDelete, set->latch, 0, __LINE__); + bt_lockpage (BtLockLink, set->latch, 0, __LINE__); + bt_freepage (mgr, set); + continue; + } + + // update prev's fence key + + ptr = fenceptr(prev->page); + bt_putid (value, prev->latch->page_no); + + if( bt_insertkey (mgr, ptr->key, ptr->len, 1, value, BtId, Unique) ) + return mgr->err; + + // splice in the left link into the split page + + set->page->left = prev->latch->page_no; + *prev = *set; + } + + // update left pointer in next right page from last split page + // (if all splits were reversed or none occurred, latch->split == 0) + + if( latch->split ) { + // fix left pointer in master's original (now split) + // far right sibling or set rightmost page in page zero + + if( right_page_no = prev->page->right ) { + if( set->latch = bt_pinlatch (mgr, right_page_no) ) + set->page = bt_mappage (mgr, set->latch); + else + return mgr->err; + + bt_lockpage (BtLockLink, set->latch, 0, __LINE__); + set->page->left = prev->latch->page_no; + bt_unlockpage (BtLockLink, set->latch, __LINE__); + bt_unpinlatch (set->latch); + } else { // prev is rightmost page + bt_mutexlock (mgr->pagezero->lock); + mgr->pagezero->rightleaf = prev->latch->page_no; + bt_releasemutex(mgr->pagezero->lock); + } + + // switch the original fence key from the + // master page to the last split page. + + ptr = fenceptr(prev->page); + bt_putid (value, prev->latch->page_no); + + if( bt_insertkey (mgr, ptr->key, ptr->len, 1, value, BtId, Update) ) + return mgr->err; + + // unlock and unpin the split pages + + bt_atomicrelease (mgr, latch->split); + + // unlock and unpin the master page + + latch->split = 0; + bt_unlockpage(BtLockWrite, latch, __LINE__); + bt_unpinlatch(latch); + continue; + } + + // since there are no splits remaining, we're + // finished if master page occupied + + if( prev->page->act ) { + bt_unlockpage(BtLockWrite, prev->latch, __LINE__); + bt_unpinlatch(prev->latch); + continue; + } + + // any and all splits were reversed, and the + // master page located in prev is empty, delete it + + if( bt_deletepage (mgr, prev, 0) ) + return mgr->err; + } + + // delete the slots + + for( idx = 0; idx++ < count; ) { + if( slotptr(source,idx)->dead ) + continue; + + slotptr(source,idx)->dead = 1; + source->act--; + } + + free (locks); + return 0; +} + +// pick & promote a page into the larger btree + +BTERR bt_promote (BtDb *bt) +{ +BtPageSet set[1]; +uint slot, idx; +BtSlot *node; +uid page_no; +BtKey *ptr; +BtVal *val; + + bt_mutexlock(bt->mgr->pagezero->promote); + + while( 1 ) { + if( bt->mgr->pagezero->leafpromote < bt->mgr->pagezero->allocpage ) + page_no = bt->mgr->pagezero->leafpromote; + else + page_no = bt->mgr->pagezero->leaf_page; + + bt->mgr->pagezero->leafpromote = page_no + (1 << bt->mgr->leaf_xtra); + + if( page_no < bt->mgr->pagezero->leaf_page ) + continue; + + if( set->latch = bt_pinlatch (bt->mgr, page_no) ) + set->page = bt_mappage (bt->mgr,set->latch); + + // skip upper level pages + + if( set->page->lvl ) { + set->latch->pin--; + bt_releasemutex(set->latch->modify); + continue; + } + + if( !bt_mutextry(set->latch->modify) ) { + set->latch->pin--; + bt_releasemutex(set->latch->modify); + continue; + } + + // skip this page if it was pinned + + if( set->latch->pin > 1 ) { + set->latch->pin--; + bt_releasemutex(set->latch->modify); + continue; + } + + // page has no right sibling + + if( !set->page->right ) { + set->latch->pin--; + bt_releasemutex(set->latch->modify); + continue; + } + + // page is being killed or constructed + + if( set->page->nopromote || set->page->kill ) { + set->latch->pin--; + bt_releasemutex(set->latch->modify); + continue; + } + + // leave it locked for the + // duration of the promotion. + + bt_releasemutex(bt->mgr->pagezero->promote); + bt_lockpage (BtLockWrite, set->latch, 0, __LINE__); + bt_releasemutex(set->latch->modify); + + // transfer slots in our selected page to the main btree + +if( !((page_no>>bt->mgr->leaf_xtra)%100) ) +fprintf(stderr, "Promote page %lld, %d keys\n", page_no, set->page->act); + + if( bt_atomicexec (bt->main, set->page, set->page->cnt, bt->tid) ) { + fprintf (stderr, "Promote error = %d line = %d\n", bt->main->err, bt->main->line); + return bt->main->err; + } + + // now delete the page + + if( bt_deletepage (bt->mgr, set, 0) ) + fprintf (stderr, "Promote: delete page err = %d\n", bt->mgr->err); + + return bt->mgr->err; + } +} + +// find unique key == given key, or first duplicate key in +// leaf level and return number of value bytes +// or (-1) if not found. + +int bt_findkey (BtDb *bt, unsigned char *key, uint keylen, unsigned char *value, uint valmax) +{ +int ret = -1, type; +BtPageSet set[1]; +BtSlot *node; +BtKey *ptr; +BtVal *val; +uint slot; + + for( type = 0; type < 2; type++ ) + if( slot = bt_loadpage (type ? bt->main : bt->mgr, set, key, keylen, 0, BtLockRead, 0) ) { + node = slotptr(set->page, slot); + + // skip librarian slot place holder + + if( node->type == Librarian ) + node = slotptr(set->page, ++slot); + + ptr = keyptr(set->page, slot); + + // not there if we reach the stopper key + // or the key doesn't match what's on the page. + + if( slot == set->page->cnt ) + if( !set->page->right ) { + bt_unlockpage (BtLockRead, set->latch, __LINE__); + bt_unpinlatch (set->latch); + continue; + } + + if( keycmp (ptr, key, keylen) ) { + bt_unlockpage (BtLockRead, set->latch, __LINE__); + bt_unpinlatch (set->latch); + continue; + } + + // key matches, return >= 0 value bytes copied + // or -1 if not there. + + if( node->type == Delete || node->dead ) { + ret = -1; + goto findxit; + } + + val = valptr (set->page,slot); + + if( valmax > val->len ) + valmax = val->len; + + memcpy (value, val->value, valmax); + ret = valmax; + goto findxit; + } + + ret = -1; + +findxit: + if( type < 2 ) { + bt_unlockpage (BtLockRead, set->latch, __LINE__); + bt_unpinlatch (set->latch); + } + return ret; +} + +// set cursor to highest slot on right-most page + +BTERR bt_lastkey (BtDb *bt) +{ +uid cache_page_no = bt->mgr->pagezero->rightleaf; +uid main_page_no = bt->main->pagezero->rightleaf; + + if( bt->cacheset->latch = bt_pinlatch (bt->mgr, cache_page_no) ) + bt->cacheset->page = bt_mappage (bt->mgr, bt->cacheset->latch); + else + return bt->mgr->err; + + bt_lockpage(BtLockRead, bt->cacheset->latch, 0, __LINE__); + bt->cacheslot = bt->cacheset->page->cnt; + + if( bt->mainset->latch = bt_pinlatch (bt->main, main_page_no) ) + bt->mainset->page = bt_mappage (bt->main, bt->mainset->latch); + else + return bt->main->err; + + bt_lockpage(BtLockRead, bt->mainset->latch, 0, __LINE__); + bt->mainslot = bt->mainset->page->cnt; + bt->phase = 2; + return 0; +} + +// return previous slot on cursor page + +uint bt_prevslot (BtMgr *mgr, BtPageSet *set, uint slot) +{ +uid next, us = set->latch->page_no; + + while( 1 ) { + while( --slot ) + if( slotptr(set->page, slot)->dead ) + continue; + else + return slot; + + next = set->page->left; + + if( !next ) + return 0; + + do { + bt_unlockpage(BtLockRead, set->latch, __LINE__); + bt_unpinlatch (set->latch); + + if( set->latch = bt_pinlatch (mgr, next) ) + set->page = bt_mappage (mgr, set->latch); + else + return 0; + + bt_lockpage(BtLockRead, set->latch, 0, __LINE__); + next = set->page->right; + + } while( next != us ); + + slot = set->page->cnt + 1; + } +} + +// advance to previous key + +BTERR bt_prevkey (BtDb *bt) +{ +int cmp; + + // first advance last key(s) one previous slot + + while( 1 ) { + switch( bt->phase ) { + case 0: + bt->cacheslot = bt_prevslot (bt->mgr, bt->cacheset, bt->cacheslot); + break; + case 1: + bt->mainslot = bt_prevslot (bt->main, bt->mainset, bt->mainslot); + break; + case 2: + bt->cacheslot = bt_prevslot (bt->mgr, bt->cacheset, bt->cacheslot); + bt->mainslot = bt_prevslot (bt->main, bt->mainset, bt->mainslot); + break; + } + + // return next key + + if( bt->cacheslot ) { + bt->cachenode = slotptr(bt->cacheset->page, bt->cacheslot); + bt->cachekey = keyptr(bt->cacheset->page, bt->cacheslot); + bt->cacheval = valptr(bt->cacheset->page, bt->cacheslot); + } + + if( bt->mainslot ) { + bt->mainnode = slotptr(bt->mainset->page, bt->mainslot); + bt->mainkey = keyptr(bt->mainset->page, bt->mainslot); + bt->mainval = valptr(bt->mainset->page, bt->mainslot); + } + + if( bt->mainslot && bt->cacheslot ) + cmp = keycmp (bt->cachekey, bt->mainkey->key, bt->mainkey->len); + else if( bt->cacheslot ) + cmp = 1; + else if( bt->mainslot ) + cmp = -1; + else + return 0; + + // cache key is larger + + if( cmp > 0 ) { + bt->phase = 0; + if( bt->cachenode->type == Delete ) + continue; + return bt->cacheslot; + } + + // main key is larger + + if( cmp < 0 ) { + bt->phase = 1; + return bt->mainslot; + } + + // keys are equal + + bt->phase = 2; + + if( bt->cachenode->type == Delete ) + continue; + + return bt->cacheslot; + } +} + +// advance to next slot in cache or main btree +// return 0 for EOF/error + +uint bt_nextslot (BtMgr *mgr, BtPageSet *set, uint slot) +{ +BtPage page; +uid page_no; + + while( 1 ) { + while( slot++ < set->page->cnt ) + if( slotptr(set->page, slot)->dead ) + continue; + else if( slot < set->page->cnt || set->page->right ) + return slot; + else + return 0; + + bt_unlockpage(BtLockRead, set->latch, __LINE__); + bt_unpinlatch (set->latch); + + if( page_no = set->page->right ) + if( set->latch = bt_pinlatch (mgr, page_no) ) + set->page = bt_mappage (mgr, set->latch); + else + return 0; + else + return 0; // EOF + + // obtain access lock using lock chaining with Access mode + + bt_lockpage(BtLockAccess, set->latch, 0, __LINE__); + bt_lockpage(BtLockRead, set->latch, 0, __LINE__); + bt_unlockpage(BtLockAccess, set->latch, __LINE__); + slot = 0; + } +} + +// advance to next key + +BTERR bt_nextkey (BtDb *bt) +{ +int cmp; + + // first advance last key(s) one next slot + + while( 1 ) { + switch( bt->phase ) { + case 0: + bt->cacheslot = bt_nextslot (bt->mgr, bt->cacheset, bt->cacheslot); + break; + case 1: + bt->mainslot = bt_nextslot (bt->main, bt->mainset, bt->mainslot); + break; + case 2: + bt->cacheslot = bt_nextslot (bt->mgr, bt->cacheset, bt->cacheslot); + bt->mainslot = bt_nextslot (bt->main, bt->mainset, bt->mainslot); + break; + } + + // return next key + + if( bt->cacheslot ) { + bt->cachenode = slotptr(bt->cacheset->page, bt->cacheslot); + bt->cachekey = keyptr(bt->cacheset->page, bt->cacheslot); + bt->cacheval = valptr(bt->cacheset->page, bt->cacheslot); + } + + if( bt->mainslot ) { + bt->mainnode = slotptr(bt->mainset->page, bt->mainslot); + bt->mainkey = keyptr(bt->mainset->page, bt->mainslot); + bt->mainval = valptr(bt->mainset->page, bt->mainslot); + } + + if( bt->mainslot && bt->cacheslot ) + cmp = keycmp (bt->cachekey, bt->mainkey->key, bt->mainkey->len); + else if( bt->mainslot ) + cmp = 1; + else if( bt->cacheslot ) + cmp = -1; + else + return 0; + + // main key is larger + // return smaller key + + if( cmp < 0 ) { + bt->phase = 0; + if( bt->cachenode->type == Delete ) + continue; + return bt->cacheslot; + } + + // cache key is larger + + if( cmp > 0 ) { + bt->phase = 1; + return bt->mainslot; + } + + // keys are equal + + bt->phase = 2; + + if( bt->cachenode->type == Delete ) + continue; + + return bt->cacheslot; + } +} + +// start sweep of keys + +BTERR bt_startkey (BtDb *bt, unsigned char *key, uint len) +{ +BtPageSet set[1]; +uint slot; + + // cache btree page + + if( slot = bt_loadpage (bt->mgr, bt->cacheset, key, len, 0, BtLockRead, 0) ) + bt->cacheslot = slot - 1; + else + return bt->mgr->err; + + // main btree page + + if( slot = bt_loadpage (bt->main, bt->mainset, key, len, 0, BtLockRead, 0) ) + bt->mainslot = slot - 1; + else + return bt->mgr->err; + + bt->phase = 2; + return 0; +} + +// flush cache pages to main btree + +BTERR bt_flushmain (BtDb *bt) +{ +uint count, cnt = 0; +BtPageSet set[1]; + + while( bt->mgr->pagezero->leafpages > 0 ) { + if( set->latch = bt_pinlatch (bt->mgr, bt->mgr->pagezero->leaf_page) ) + set->page = bt_mappage (bt->mgr, set->latch); + else + return bt->mgr->err; + + bt_lockpage(BtLockWrite, set->latch, 0, __LINE__); + count = set->page->cnt; + + if( !set->page->right ) + count--; + +if( !(cnt++ % 100) ) +fprintf(stderr, "Promote LEAF_page %d with %d keys\n", cnt, set->page->act); + + if( bt_atomicexec (bt->main, set->page, count, bt->tid) ) + return bt->mgr->line = bt->main->line, bt->mgr->err = bt->main->err; + + if( set->page->right ) + if( bt_deletepage (bt->mgr, set, 0) ) + return bt->mgr->err; + else + continue; + + bt_unlockpage(BtLockWrite, set->latch, __LINE__); + bt_unpinlatch (set->latch); + return 0; + } + + // leaf page count is off + + bt->mgr->line = __LINE__; + return bt->mgr->err = BTERR_ovflw; +} + +#ifdef STANDALONE + +#ifndef unix +double getCpuTime(int type) +{ +FILETIME crtime[1]; +FILETIME xittime[1]; +FILETIME systime[1]; +FILETIME usrtime[1]; +SYSTEMTIME timeconv[1]; +double ans = 0; + + memset (timeconv, 0, sizeof(SYSTEMTIME)); + + switch( type ) { + case 0: + GetSystemTimeAsFileTime (xittime); + FileTimeToSystemTime (xittime, timeconv); + ans = (double)timeconv->wDayOfWeek * 3600 * 24; + break; + case 1: + GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); + FileTimeToSystemTime (usrtime, timeconv); + break; + case 2: + GetProcessTimes (GetCurrentProcess(), crtime, xittime, systime, usrtime); + FileTimeToSystemTime (systime, timeconv); + break; + } + + ans += (double)timeconv->wHour * 3600; + ans += (double)timeconv->wMinute * 60; + ans += (double)timeconv->wSecond; + ans += (double)timeconv->wMilliseconds / 1000; + return ans; +} +#else +#include +#include + +double getCpuTime(int type) +{ +struct rusage used[1]; +struct timeval tv[1]; + + switch( type ) { + case 0: + gettimeofday(tv, NULL); + return (double)tv->tv_sec + (double)tv->tv_usec / 1000000; + + case 1: + getrusage(RUSAGE_SELF, used); + return (double)used->ru_utime.tv_sec + (double)used->ru_utime.tv_usec / 1000000; + + case 2: + getrusage(RUSAGE_SELF, used); + return (double)used->ru_stime.tv_sec + (double)used->ru_stime.tv_usec / 1000000; + } + + return 0; +} +#endif + +void bt_poolaudit (BtMgr *mgr, char *type) +{ +BtLatchSet *latch, test[1]; +uint entry; + + memset (test, 0, sizeof(test)); + + if( memcmp (test, mgr->latchsets, sizeof(test)) ) + fprintf(stderr, "%s latchset zero overwritten\n", type); + + for( entry = 0; ++entry < mgr->pagezero->latchtotal; ) { + latch = mgr->latchsets + entry; + + if( *latch->modify->value ) + fprintf(stderr, "%s latchset %d modifylocked for page %lld\n", type, entry, latch->page_no); + + if( latch->pin ) + fprintf(stderr, "%s latchset %d pinned %d times for page %lld\n", type, entry, latch->pin, latch->page_no); + } +} + +typedef struct { + char idx; + char *type; + char *infile; + BtMgr *main; + BtMgr *mgr; + int num; +} ThreadArg; + +// standalone program to index file of keys +// then list them onto std-out + +#ifdef unix +void *index_file (void *arg) +#else +uint __stdcall index_file (void *arg) +#endif +{ +int line = 0, found = 0, cnt = 0, cachecnt, idx; +int ch, len = 0, slot, type = 0; +unsigned char key[BT_maxkey]; +unsigned char buff[65536]; +uint nxt = sizeof(buff); +ThreadArg *args = arg; +uint counts[8][2]; +BtPageSet set[1]; +BtPage page; +uid page_no; +int vallen; +BtKey *ptr; +BtVal *val; +uint size; +BtDb *bt; +FILE *in; + + bt = bt_open (args->mgr, args->main); + page = (BtPage)buff; + + if( args->idx < strlen (args->type) ) + ch = args->type[args->idx]; + else + ch = args->type[strlen(args->type) - 1]; + + switch(ch | 0x20) + { + case 'm': + fprintf(stderr, "started flushing cache to main btree\n"); + + if( bt->main ) + if( bt_flushmain(bt) ) + fprintf(stderr, "Error %d Line: %d\n", bt->mgr->err, bt->mgr->line), exit(0); + + break; + + case 'd': + type = Delete; + + case 'p': + if( !type ) + type = Unique; + + if( args->num ) + if( type == Delete ) + fprintf(stderr, "started TXN pennysort delete for %s\n", args->infile); + else + fprintf(stderr, "started TXN pennysort insert for %s\n", args->infile); + else + if( type == Delete ) + fprintf(stderr, "started pennysort delete for %s\n", args->infile); + else + fprintf(stderr, "started pennysort insert for %s\n", args->infile); + + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + + if( !args->num ) { + if( bt_insertkey (bt->mgr, key, 10, 0, key + 10, len - 10, Unique) ) + fprintf(stderr, "Error %d Line: %d source: %d\n", bt->mgr->err, bt->mgr->line, line), exit(0); + len = 0; + continue; + } + + nxt -= len - 10; + memcpy (buff + nxt, key + 10, len - 10); + nxt -= 1; + buff[nxt] = len - 10; + nxt -= 10; + memcpy (buff + nxt, key, 10); + nxt -= 1; + buff[nxt] = 10; + slotptr(page,++cnt)->off = nxt; + slotptr(page,cnt)->type = type; + slotptr(page,cnt)->dead = 0; + len = 0; + + if( cnt < args->num ) + continue; + + page->cnt = cnt; + page->act = cnt; + page->min = nxt; + + if( bt_atomictxn (bt, page) ) + fprintf(stderr, "Error %d Line: %d source: %d\n", bt->mgr->err, bt->mgr->line, line), exit(0); + nxt = sizeof(buff); + cnt = 0; + + } + else if( len < BT_maxkey ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys\n", args->infile, line); + break; + + case 'w': + fprintf(stderr, "started indexing for %s\n", args->infile); + if( in = fopen (args->infile, "r") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + + if( bt_insertkey (bt->mgr, key, len, 0, NULL, 0, Unique) ) + fprintf(stderr, "Error %d Line: %d source: %d\n", bt->mgr->err, bt->mgr->line, line), exit(0); + len = 0; + } + else if( len < BT_maxkey ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys\n", args->infile, line); + break; + + case 'f': + fprintf(stderr, "started finding keys for %s\n", args->infile); + if( in = fopen (args->infile, "rb") ) + while( ch = getc(in), ch != EOF ) + if( ch == '\n' ) + { + line++; + if( bt_findkey (bt, key, len, NULL, 0) == 0 ) + found++; + else if( bt->mgr->err ) + fprintf(stderr, "Error %d Syserr %d Line: %d source: %d\n", bt->mgr->err, errno, bt->mgr->line, line), exit(0); + len = 0; + } + else if( len < BT_maxkey ) + key[len++] = ch; + fprintf(stderr, "finished %s for %d keys, found %d\n", args->infile, line, found); + break; + + case 's': + fprintf(stderr, "started forward scan\n"); + if( bt_startkey (bt, NULL, 0) ) + fprintf(stderr, "unable to begin scan error %d Line: %d\n", bt->mgr->err, bt->mgr->line); + + while( bt_nextkey (bt) ) { + if( bt->phase == 1 ) { + len = bt->mainkey->len; + + if( bt->mainnode->type == Duplicate ) + len -= BtId; + + fwrite (bt->mainkey->key, len, 1, stdout); + fwrite (bt->mainval->value, bt->mainval->len, 1, stdout); + } else { + len = bt->cachekey->len; + + if( bt->cachenode->type == Duplicate ) + len -= BtId; + + fwrite (bt->cachekey->key, len, 1, stdout); + fwrite (bt->cacheval->value, bt->cacheval->len, 1, stdout); + } + + fputc ('\n', stdout); + cnt++; + } + + bt_unlockpage(BtLockRead, bt->cacheset->latch, __LINE__); + bt_unpinlatch (bt->cacheset->latch); + + bt_unlockpage(BtLockRead, bt->mainset->latch, __LINE__); + bt_unpinlatch (bt->mainset->latch); + + fprintf(stderr, " Total keys read %d\n", cnt); + break; + + case 'r': + fprintf(stderr, "started reverse scan\n"); + if( bt_lastkey (bt) ) + fprintf(stderr, "unable to begin scan error %d Line: %d\n", bt->mgr->err, bt->mgr->line); + + while( bt_prevkey (bt) ) { + if( bt->phase == 1 ) { + len = bt->mainkey->len; + + if( bt->mainnode->type == Duplicate ) + len -= BtId; + + fwrite (bt->mainkey->key, len, 1, stdout); + fwrite (bt->mainval->value, bt->mainval->len, 1, stdout); + } else { + len = bt->cachekey->len; + + if( bt->cachenode->type == Duplicate ) + len -= BtId; + + fwrite (bt->cachekey->key, len, 1, stdout); + fwrite (bt->cacheval->value, bt->cacheval->len, 1, stdout); + } + + fputc ('\n', stdout); + cnt++; + } + + bt_unlockpage(BtLockRead, bt->cacheset->latch, __LINE__); + bt_unpinlatch (bt->cacheset->latch); + + bt_unlockpage(BtLockRead, bt->mainset->latch, __LINE__); + bt_unpinlatch (bt->mainset->latch); + + fprintf(stderr, " Total keys read %d\n", cnt); + break; + + case 'c': + fprintf(stderr, "started counting LSM cache btree\n"); + memset (counts, 0, sizeof(counts)); + page_no = bt->mgr->pagezero->leaf_page; + + size = bt->mgr->page_size << bt->mgr->leaf_xtra; + page = malloc(size); + +#ifdef unix + posix_fadvise( bt->mgr->idx, 0, 0, POSIX_FADV_SEQUENTIAL); +#endif + while( page_no < bt->mgr->pagezero->allocpage ) { + if( bt_readpage (bt->mgr, page, page_no, 0) ) + fprintf(stderr, "Unable to read page %lld from cache\n", page_no), exit(1); + if( !page->lvl && !page->free ) { + cnt += page->act; + + for( idx = 0; idx++ < page->cnt; ) { + BtSlot *node = slotptr (page, idx); + counts[node->type][node->dead]++; + } + } + page_no += 1 << bt->mgr->leaf_xtra; + } + + cachecnt = --cnt; // remove stopper key + counts[Unique][0]--; + + fprintf(stderr, " Unique : %d dead: %d\n", counts[Unique][0], counts[Unique][1]); + fprintf(stderr, " Duplicates: %d dead: %d\n", counts[Duplicate][0], counts[Duplicate][1]); + fprintf(stderr, " Librarian : %d dead: %d\n", counts[Librarian][0], counts[Librarian][1]); + fprintf(stderr, " Deletion : %d dead: %d\n", counts[Delete][0], counts[Delete][1]); + fprintf(stderr, "total cache keys count: %d\n", cachecnt); + free (page); + + fprintf(stderr, "started counting LSM main btree\n"); + memset (counts, 0, sizeof(counts)); + size = bt->main->page_size << bt->main->leaf_xtra; + page_no = bt->mgr->pagezero->leaf_page; + page = malloc(size); + cnt = 0; + +#ifdef unix + posix_fadvise( bt->main->idx, 0, 0, POSIX_FADV_SEQUENTIAL); +#endif + while( page_no < bt->main->pagezero->allocpage ) { + if( bt_readpage (bt->main, page, page_no, 0) ) + fprintf(stderr, "Unable to read page %lld from main\n", page_no), exit(1); + if( !page->lvl && !page->free ) { + cnt += page->act; + + for( idx = 0; idx++ < page->cnt; ) { + BtSlot *node = slotptr (page, idx); + counts[node->type][node->dead]++; + } + } + page_no += 1 << bt->main->leaf_xtra; + } + + cnt--; // remove stopper key + counts[Unique][0]--; + + fprintf(stderr, " Unique : %d dead: %d\n", counts[Unique][0], counts[Unique][1]); + fprintf(stderr, " Duplicates: %d dead: %d\n", counts[Duplicate][0], counts[Duplicate][1]); + fprintf(stderr, " Librarian : %d dead: %d\n", counts[Librarian][0], counts[Librarian][1]); + fprintf(stderr, " Deletion : %d dead: %d\n", counts[Delete][0], counts[Delete][1]); + fprintf(stderr, "total main keys count : %d\n", cnt); + fprintf(stderr, "Total keys counted : %d\n", cnt + cachecnt); + free (page); + break; + } + + bt_close (bt); +#ifdef unix + return NULL; +#else + return 0; +#endif +} + +typedef struct timeval timer; + +int main (int argc, char **argv) +{ +int idx, cnt, len, slot, err; +double start, stop; +#ifdef unix +pthread_t *threads; +#else +HANDLE *threads; +#endif +ThreadArg *args; +uint mainleafpool = 0; +uint mainleafxtra = 0; +uint maxleaves = 0; +uint poolsize = 0; +uint leafpool = 0; +uint leafxtra = 0; +uint mainpool = 0; +uint mainbits = 0; +int bits = 16; +float elapsed; +int num = 0; +char key[1]; +BtMgr *main; +BtMgr *mgr; +BtKey *ptr; + + if( argc < 3 ) { + fprintf (stderr, "Usage: %s idx_file main_file cmds [pagebits leafbits poolsize txnsize mainbits mainleafbits mainpool maxleaves src_file1 src_file2 ... ]\n", argv[0]); + fprintf (stderr, " where idx_file is the name of the cache btree file\n"); + fprintf (stderr, " where main_file is the name of the main btree file\n"); + fprintf (stderr, " cmds is a string of (r)ev scan/(w)rite/(s)can/(d)elete/(f)ind/(p)ennysort/(c)ount/(m)ainflush, with a one character command for each input src_file. A command can also be given with no input file\n"); + fprintf (stderr, " pagebits is the page size in bits for the cache btree\n"); + fprintf (stderr, " leafbits is the number of xtra bits for a leaf page\n"); + fprintf (stderr, " poolsize is the number of latches in latch pool for the cache btree\n"); + fprintf (stderr, " txnsize = n to block transactions into n units, or zero for no transactions\n"); + fprintf (stderr, " mainbits is the page size of the main btree in bits\n"); + fprintf (stderr, " mainpool is the number of latches in the main latch pool\n"); + fprintf (stderr, " maxleaves is the threashold for LSM leaf page promotion\n"); + fprintf (stderr, " src_file1 thru src_filen are files of keys separated by newline\n"); + exit(0); + } + + start = getCpuTime(0); + + if( argc > 4 ) + bits = atoi(argv[4]); + + if( argc > 5 ) + leafxtra = atoi(argv[5]); + + if( argc > 6 ) + poolsize = atoi(argv[6]); + + if( argc > 7 ) + num = atoi(argv[7]); + + if( argc > 8 ) + mainbits = atoi(argv[8]); + + if( argc > 9 ) + mainleafxtra = atoi(argv[9]); + + if( argc > 10 ) + mainpool = atoi(argv[10]); + + if( argc > 11 ) + maxleaves = atoi(argv[11]); + + if( argc > 12 ) + cnt = argc - 12; + else + cnt = 0; + +#ifdef unix + threads = malloc (cnt * sizeof(pthread_t)); +#else + threads = GlobalAlloc (GMEM_FIXED|GMEM_ZEROINIT, cnt * sizeof(HANDLE)); +#endif + args = malloc ((cnt + 1) * sizeof(ThreadArg)); + + mgr = bt_mgr (argv[1], bits, leafxtra, poolsize); + + if( !mgr ) { + fprintf(stderr, "Index Open Error %s\n", argv[1]); + exit (1); + } else { + mgr->maxleaves = maxleaves; + mgr->type = 0; + } + + main = bt_mgr (argv[2], mainbits, mainleafxtra, mainpool); + + if( !main ) { + fprintf(stderr, "Index Open Error %s\n", argv[2]); + exit (1); + } else + main->type = 1; + + // fire off threads + + if( cnt > 0 ) + for( idx = 0; idx < cnt; idx++ ) { + args[idx].infile = argv[idx + 12]; + args[idx].type = argv[3]; + args[idx].main = main; + args[idx].mgr = mgr; + args[idx].num = num; + args[idx].idx = idx; +#ifdef unix + if( err = pthread_create (threads + idx, NULL, index_file, args + idx) ) + fprintf(stderr, "Error creating thread %d\n", err); +#else + threads[idx] = (HANDLE)_beginthreadex(NULL, 131072, index_file, args + idx, 0, NULL); +#endif + } + else { + args[0].type = argv[3]; + args[0].main = main; + args[0].mgr = mgr; + args[0].num = num; + args[0].idx = 0; + index_file (args); + } + + // wait for termination + +#ifdef unix + for( idx = 0; idx < cnt; idx++ ) + pthread_join (threads[idx], NULL); +#else + WaitForMultipleObjects (cnt, threads, TRUE, INFINITE); + + for( idx = 0; idx < cnt; idx++ ) + CloseHandle(threads[idx]); +#endif + bt_poolaudit(mgr, "cache"); + + if( main ) + bt_poolaudit(main, "main"); + + fprintf(stderr, "cache %lld leaves %lld upper %d found\n", mgr->pagezero->leafpages, mgr->pagezero->upperpages, mgr->found); + if( main ) + fprintf(stderr, "main %lld leaves %lld upper %d found\n", main->pagezero->leafpages, main->pagezero->upperpages, main->found); + + bt_mgrclose (mgr); + + if( main ) + bt_mgrclose (main); + + elapsed = getCpuTime(0) - start; + fprintf(stderr, " real %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); + elapsed = getCpuTime(1); + fprintf(stderr, " user %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); + elapsed = getCpuTime(2); + fprintf(stderr, " sys %dm%.3fs\n", (int)(elapsed/60), elapsed - (int)(elapsed/60)*60); +} + +BtKey *bt_fence (BtPage page) +{ +return fenceptr(page); +} + +BtKey *bt_key (BtPage page, uint slot) +{ +return keyptr(page,slot); +} + +BtSlot *bt_slot (BtPage page, uint slot) +{ +return slotptr(page,slot); +} +#endif //STANDALONE -- 2.40.0