/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * C implementation of Cliff Click's lock-free hash table from * http://www.azulsystems.com/events/javaone_2008/2008_CodingNonBlock.pdf * http://sourceforge.net/projects/high-scale-lib * * Note: This is code uses synchronous atomic operations because that is all that x86 provides. * Every atomic operation is also an implicit full memory barrier. The upshot is that it simplifies * the code a bit, but it won't be as fast as it could be on platforms like SPARC that provide * weaker operations which would still do the job. */ #include #include "common.h" #include "murmur.h" #include "mem.h" #include "hashtable.h" #define GET_PTR(x) ((void *)((x) & MASK(48))) // low-order 48 bits is a pointer to a nstring_t typedef struct entry { uint64_t key; uint64_t val; } entry_t; typedef struct hti { volatile entry_t *table; hashtable_t *ht; // parent ht; struct hti *next; unsigned scale; int max_probe; int references; int count; // TODO: make these counters distributed int num_entries_copied; int copy_scan; } hti_t; struct ht_iter { hti_t * hti; int64_t idx; uint64_t key; uint64_t val; }; struct ht { hti_t *hti; const datatype_t *key_type; }; static const uint64_t COPIED_VALUE = -1; static const uint64_t TOMBSTONE = STRIP_TAG(-1, TAG1); static const unsigned ENTRIES_PER_BUCKET = CACHE_LINE_SIZE/sizeof(entry_t); static const unsigned ENTRIES_PER_COPY_CHUNK = CACHE_LINE_SIZE/sizeof(entry_t)*2; static const unsigned MIN_SCALE = 4; // min 16 entries (4 buckets) static const unsigned MAX_BUCKETS_TO_PROBE = 250; static int hti_copy_entry (hti_t *ht1, volatile entry_t *ent, uint32_t ent_key_hash, hti_t *ht2); // Choose the next bucket to probe using the high-order bits of . static inline int get_next_ndx(int old_ndx, uint32_t key_hash, int ht_scale) { int incr = (key_hash >> (32 - ht_scale)); incr += !incr; // If the increment is 0, make it 1. return (old_ndx + incr) & MASK(ht_scale); } // Lookup in . // // Return the entry that is in, or if isn't in return the entry that it would be // in if it were inserted into . If there is no room for in then return NULL, to // indicate that the caller should look in next>. // // Record if the entry being returned is empty. Otherwise the caller will have to waste time // re-comparing the keys to confirm that it did not lose a race to fill an empty entry. static volatile entry_t *hti_lookup (hti_t *hti, void *key, uint32_t key_hash, int *is_empty) { TRACE("h2", "hti_lookup(key %p in hti %p)", key, hti); *is_empty = 0; // Probe one cache line at a time int ndx = key_hash & MASK(hti->scale); // the first entry to search for (int i = 0; i < hti->max_probe; ++i) { // The start of the bucket is the first entry in the cache line. volatile entry_t *bucket = hti->table + (ndx & ~(ENTRIES_PER_BUCKET-1)); // Start searching at the indexed entry. Then loop around to the begining of the cache line. for (int j = 0; j < ENTRIES_PER_BUCKET; ++j) { volatile entry_t *ent = bucket + ((ndx + j) & (ENTRIES_PER_BUCKET-1)); uint64_t ent_key = ent->key; if (ent_key == DOES_NOT_EXIST) { TRACE("h1", "hti_lookup: entry %p for key %p is empty", ent, (hti->ht->key_type == NULL) ? (void *)ent_key : GET_PTR(ent_key)); *is_empty = 1; // indicate an empty so the caller avoids an expensive key compare return ent; } // Compare with the key in the entry. if (EXPECT_TRUE(hti->ht->key_type == NULL)) { // fast path for integer keys if (ent_key == (uint64_t)key) { TRACE("h1", "hti_lookup: found entry %p with key %p", ent, ent_key); return ent; } } else { // The key in is made up of two parts. The 48 low-order bits are a pointer. The // high-order 16 bits are taken from the hash. The bits from the hash are used as a // quick check to rule out non-equal keys without doing a complete compare. if ((key_hash >> 16) == (ent_key >> 48) && hti->ht->key_type->cmp(GET_PTR(ent_key), key) == 0) { TRACE("h1", "hti_lookup: found entry %p with key %p", ent, GET_PTR(ent_key)); return ent; } } } ndx = get_next_ndx(ndx, key_hash, hti->scale); } // maximum number of probes exceeded TRACE("h1", "hti_lookup: maximum number of probes exceeded returning 0x0", 0, 0); return NULL; } // Allocate and initialize a hti_t with 2^ entries. static hti_t *hti_alloc (hashtable_t *parent, int scale) { hti_t *hti = (hti_t *)nbd_malloc(sizeof(hti_t)); memset(hti, 0, sizeof(hti_t)); size_t sz = sizeof(entry_t) * (1 << scale); entry_t *table = nbd_malloc(sz); memset(table, 0, sz); hti->table = table; hti->scale = scale; // When searching for a key probe a maximum of 1/4 of the buckets up to 1000 buckets. hti->max_probe = ((1 << (hti->scale - 2)) / ENTRIES_PER_BUCKET) + 4; if (hti->max_probe > MAX_BUCKETS_TO_PROBE) { hti->max_probe = MAX_BUCKETS_TO_PROBE; } hti->ht = parent; assert(hti->scale >= MIN_SCALE && hti->scale < 63); // size must be a power of 2 assert(sizeof(entry_t) * ENTRIES_PER_BUCKET % CACHE_LINE_SIZE == 0); // divisible into cache assert((size_t)hti->table % CACHE_LINE_SIZE == 0); // cache aligned return hti; } // Called when runs out of room for new keys. // // Initiates a copy by creating a larger hti_t and installing it in next>. static void hti_start_copy (hti_t *hti) { TRACE("h0", "hti_start_copy(hti %p scale %llu)", hti, hti->scale); // heuristics to determine the size of the new table uint64_t count = ht_count(hti->ht); unsigned int new_scale = hti->scale; new_scale += (count > (1 << (new_scale - 2))); // double size if more than 1/4 full new_scale += (count > (1 << (new_scale - 2))); // double size again if more than 1/2 full // Allocate the new table and attempt to install it. hti_t *next = hti_alloc(hti->ht, new_scale); hti_t *old_next = SYNC_CAS(&hti->next, NULL, next); if (old_next != NULL) { // Another thread beat us to it. TRACE("h0", "hti_start_copy: lost race to install new hti; found %p", old_next, 0); nbd_free(next); return; } TRACE("h0", "hti_start_copy: new hti %p scale %llu", next, next->scale); } // Copy the key and value stored in (which must be an entry in ) to . // // Return 1 unless is already copied (then return 0), so the caller can account for the total // number of entries left to copy. static int hti_copy_entry (hti_t *ht1, volatile entry_t *ht1_ent, uint32_t key_hash, hti_t *ht2) { TRACE("h2", "hti_copy_entry: entry %p to table %p", ht1_ent, ht2); assert(ht1); assert(ht1->next); assert(ht2); assert(ht1_ent >= ht1->table && ht1_ent < ht1->table + (1 << ht1->scale)); assert(key_hash == 0 || ht1->ht->key_type == NULL || (key_hash >> 16) == (ht1_ent->key >> 48)); uint64_t ht1_ent_val = ht1_ent->val; if (EXPECT_FALSE(ht1_ent_val == COPIED_VALUE)) { TRACE("h1", "hti_copy_entry: entry %p already copied to table %p", ht1_ent, ht2); return FALSE; // already copied } // Kill empty entries. if (EXPECT_FALSE(ht1_ent_val == DOES_NOT_EXIST)) { uint64_t ht1_ent_val = SYNC_CAS(&ht1_ent->val, DOES_NOT_EXIST, COPIED_VALUE); if (ht1_ent_val == DOES_NOT_EXIST) { TRACE("h1", "hti_copy_entry: empty entry %p killed", ht1_ent, 0); return TRUE; } if (ht1_ent_val == COPIED_VALUE) { TRACE("h0", "hti_copy_entry: lost race to kill empty entry %p; the entry is already killed", ht1_ent, 0); return FALSE; // another thread beat us to it } TRACE("h0", "hti_copy_entry: lost race to kill empty entry %p; the entry is not empty", ht1_ent, 0); } // Tag the value in the old entry to indicate a copy is in progress. ht1_ent_val = SYNC_FETCH_AND_OR(&ht1_ent->val, TAG_VALUE(0, TAG1)); TRACE("h2", "hti_copy_entry: tagged the value %p in old entry %p", ht1_ent_val, ht1_ent); if (ht1_ent_val == COPIED_VALUE) { TRACE("h1", "hti_copy_entry: entry %p already copied to table %p", ht1_ent, ht2); return FALSE; // was already copied by another thread. } // Install the key in the new table. uint64_t ht1_ent_key = ht1_ent->key; void *key = (ht1->ht->key_type == NULL) ? (void *)ht1_ent_key : GET_PTR(ht1_ent_key); // The old table's dead entries don't need to be copied to the new table, but their keys need to be freed. assert(COPIED_VALUE == TAG_VALUE(TOMBSTONE, TAG1)); if (ht1_ent_val == TOMBSTONE) { TRACE("h1", "hti_copy_entry: entry %p old value was deleted, now freeing key %p", ht1_ent, key); if (EXPECT_FALSE(ht1->ht->key_type != NULL)) { nbd_defer_free(key); } return TRUE; } // We use 0 to indicate that is uninitiallized. Occasionally the key's hash will really be 0 and we // waste time recomputing it every time. It is rare enough (1 in 65k) that it won't hurt performance. if (key_hash == 0) { key_hash = (ht1->ht->key_type == NULL) ? murmur32_8b(ht1_ent_key) : ht1->ht->key_type->hash(key); } int ht2_ent_is_empty; volatile entry_t *ht2_ent = hti_lookup(ht2, key, key_hash, &ht2_ent_is_empty); TRACE("h0", "hti_copy_entry: copy entry %p to entry %p", ht1_ent, ht2_ent); // It is possible that there isn't any room in the new table either. if (EXPECT_FALSE(ht2_ent == NULL)) { TRACE("h0", "hti_copy_entry: no room in table %p copy to next table %p", ht2, ht2->next); if (ht2->next == NULL) { hti_start_copy(ht2); // initiate nested copy, if not already started } return hti_copy_entry(ht1, ht1_ent, key_hash, ht2->next); // recursive tail-call } if (ht2_ent_is_empty) { uint64_t old_ht2_ent_key = SYNC_CAS(&ht2_ent->key, DOES_NOT_EXIST, ht1_ent_key); if (old_ht2_ent_key != DOES_NOT_EXIST) { TRACE("h0", "hti_copy_entry: lost race to CAS key %p into new entry; found %p", ht1_ent_key, old_ht2_ent_key); return hti_copy_entry(ht1, ht1_ent, key_hash, ht2); // recursive tail-call } } // Copy the value to the entry in the new table. ht1_ent_val = STRIP_TAG(ht1_ent_val, TAG1); uint64_t old_ht2_ent_val = SYNC_CAS(&ht2_ent->val, DOES_NOT_EXIST, ht1_ent_val); // If there is a nested copy in progress, we might have installed the key into a dead entry. if (old_ht2_ent_val == COPIED_VALUE) { TRACE("h0", "hti_copy_entry: nested copy in progress; copy %p to next table %p", ht2_ent, ht2->next); return hti_copy_entry(ht1, ht1_ent, key_hash, ht2->next); // recursive tail-call } // Mark the old entry as dead. ht1_ent->val = COPIED_VALUE; // Update the count if we were the one that completed the copy. if (old_ht2_ent_val == DOES_NOT_EXIST) { TRACE("h0", "hti_copy_entry: key %p value %p copied to new entry", key, ht1_ent_val); SYNC_ADD(&ht1->count, -1); SYNC_ADD(&ht2->count, 1); return TRUE; } TRACE("h0", "hti_copy_entry: lost race to install value %p in new entry; found value %p", ht1_ent_val, old_ht2_ent_val); return FALSE; // another thread completed the copy } // Compare with the existing value associated with . If the values match then // replace the existing value with . If is DOES_NOT_EXIST, delete the value associated with // the key by replacing it with a TOMBSTONE. // // Return the previous value associated with , or DOES_NOT_EXIST if is not in the table // or associated with a TOMBSTONE. If a copy is in progress and has been copied to the next // table then return COPIED_VALUE. // // NOTE: the returned value matches iff the set succeeds // // Certain values of have special meaning. If is CAS_EXPECT_EXISTS then any // real value matches (i.ent. not a TOMBSTONE or DOES_NOT_EXIST) as long as is in the table. If // is CAS_EXPECT_WHATEVER then skip the test entirely. // static uint64_t hti_cas (hti_t *hti, void *key, uint32_t key_hash, uint64_t expected, uint64_t new) { TRACE("h1", "hti_cas: hti %p key %p", hti, key); TRACE("h1", "hti_cas: value %p expect %p", new, expected); assert(hti); assert(!IS_TAGGED(new, TAG1)); assert(key); int is_empty; volatile entry_t *ent = hti_lookup(hti, key, key_hash, &is_empty); // There is no room for , grow the table and try again. if (ent == NULL) { if (hti->next == NULL) { hti_start_copy(hti); } return COPIED_VALUE; } // Install in the table if it doesn't exist. if (is_empty) { TRACE("h0", "hti_cas: entry %p is empty", ent, 0); if (expected != CAS_EXPECT_WHATEVER && expected != CAS_EXPECT_DOES_NOT_EXIST) return DOES_NOT_EXIST; // No need to do anything, is already deleted. if (new == DOES_NOT_EXIST) return DOES_NOT_EXIST; // Allocate . uint64_t new_key = (uint64_t)((hti->ht->key_type == NULL) ? key : hti->ht->key_type->clone(key)); if (EXPECT_FALSE(hti->ht->key_type != NULL)) { // Combine pointer with bits from its hash new_key = ((uint64_t)(key_hash >> 16) << 48) | new_key; } // CAS the key into the table. uint64_t old_ent_key = SYNC_CAS(&ent->key, DOES_NOT_EXIST, new_key); // Retry if another thread stole the entry out from under us. if (old_ent_key != DOES_NOT_EXIST) { TRACE("h0", "hti_cas: lost race to install key %p in entry %p", new_key, ent); TRACE("h0", "hti_cas: found %p instead of NULL", (hti->ht->key_type == NULL) ? (void *)old_ent_key : GET_PTR(old_ent_key), 0); if (hti->ht->key_type != NULL) { nbd_free(GET_PTR(new_key)); } return hti_cas(hti, key, key_hash, expected, new); // tail-call } TRACE("h2", "hti_cas: installed key %p in entry %p", new_key, ent); } TRACE("h0", "hti_cas: entry for key %p is %p", (hti->ht->key_type == NULL) ? (void *)ent->key : GET_PTR(ent->key), ent); // If the entry is in the middle of a copy, the copy must be completed first. uint64_t ent_val = ent->val; if (EXPECT_FALSE(IS_TAGGED(ent_val, TAG1))) { if (ent_val != COPIED_VALUE) { int did_copy = hti_copy_entry(hti, ent, key_hash, ((volatile hti_t *)hti)->next); if (did_copy) { SYNC_ADD(&hti->num_entries_copied, 1); } TRACE("h0", "hti_cas: value in the middle of a copy, copy completed by %s", (did_copy ? "self" : "other"), 0); } TRACE("h0", "hti_cas: value copied to next table, retry on next table", 0, 0); return COPIED_VALUE; } // Fail if the old value is not consistent with the caller's expectation. int old_existed = (ent_val != TOMBSTONE && ent_val != DOES_NOT_EXIST); if (EXPECT_FALSE(expected != CAS_EXPECT_WHATEVER && expected != ent_val)) { if (EXPECT_FALSE(expected != (old_existed ? CAS_EXPECT_EXISTS : CAS_EXPECT_DOES_NOT_EXIST))) { TRACE("h1", "hti_cas: value %p expected by caller not found; found value %p", expected, ent_val); return ent_val; } } // No need to update if value is unchanged. if ((new == DOES_NOT_EXIST && !old_existed) || ent_val == new) { TRACE("h1", "hti_cas: old value and new value were the same", 0, 0); return ent_val; } // CAS the value into the entry. Retry if it fails. uint64_t v = SYNC_CAS(&ent->val, ent_val, new == DOES_NOT_EXIST ? TOMBSTONE : new); if (EXPECT_FALSE(v != ent_val)) { TRACE("h0", "hti_cas: value CAS failed; expected %p found %p", ent_val, v); return hti_cas(hti, key, key_hash, expected, new); // recursive tail-call } // The set succeeded. Adjust the value count. if (old_existed && new == DOES_NOT_EXIST) { SYNC_ADD(&hti->count, -1); } else if (!old_existed && new != DOES_NOT_EXIST) { SYNC_ADD(&hti->count, 1); } // Return the previous value. TRACE("h0", "hti_cas: CAS succeeded; old value %p new value %p", ent_val, new); return ent_val; } // static uint64_t hti_get (hti_t *hti, void *key, uint32_t key_hash) { int is_empty; volatile entry_t *ent = hti_lookup(hti, key, key_hash, &is_empty); // When hti_lookup() returns NULL it means we hit the reprobe limit while // searching the table. In that case, if a copy is in progress the key // might exist in the copy. if (EXPECT_FALSE(ent == NULL)) { if (((volatile hti_t *)hti)->next != NULL) return hti_get(hti->next, key, key_hash); // recursive tail-call return DOES_NOT_EXIST; } if (is_empty) return DOES_NOT_EXIST; // If the entry is being copied, finish the copy and retry on the next table. uint64_t ent_val = ent->val; if (EXPECT_FALSE(IS_TAGGED(ent_val, TAG1))) { if (EXPECT_FALSE(ent_val != COPIED_VALUE)) { int did_copy = hti_copy_entry(hti, ent, key_hash, ((volatile hti_t *)hti)->next); if (did_copy) { SYNC_ADD(&hti->num_entries_copied, 1); } } return hti_get(((volatile hti_t *)hti)->next, key, key_hash); // tail-call } return (ent_val == TOMBSTONE) ? DOES_NOT_EXIST : ent_val; } // uint64_t ht_get (hashtable_t *ht, void *key) { uint32_t hash = (ht->key_type == NULL) ? murmur32_8b((uint64_t)key) : ht->key_type->hash(key); return hti_get(ht->hti, key, hash); } // returns TRUE if copy is done int hti_help_copy (hti_t *hti) { volatile entry_t *ent; uint64_t limit; uint64_t total_copied = hti->num_entries_copied; int num_copied = 0; int x = hti->copy_scan; TRACE("h1", "ht_cas: help copy. scan is %llu, size is %llu", x, 1<scale); if (total_copied != (1 << hti->scale)) { // Panic if we've been around the array twice and still haven't finished the copy. int panic = (x >= (1 << (hti->scale + 1))); if (!panic) { limit = ENTRIES_PER_COPY_CHUNK; // Reserve some entries for this thread to copy. There is a race condition here because the // fetch and add isn't atomic, but that is ok. hti->copy_scan = x + ENTRIES_PER_COPY_CHUNK; // might be larger than the size of the table, if some thread stalls while // copying. In that case we just wrap around to the begining and make another pass through // the table. ent = hti->table + (x & MASK(hti->scale)); } else { TRACE("h1", "ht_cas: help copy panic", 0, 0); // scan the whole table ent = hti->table; limit = (1 << hti->scale); } // Copy the entries for (int i = 0; i < limit; ++i) { num_copied += hti_copy_entry(hti, ent++, 0, hti->next); assert(ent <= hti->table + (1 << hti->scale)); } if (num_copied != 0) { total_copied = SYNC_ADD(&hti->num_entries_copied, num_copied); } } return (total_copied == (1 << hti->scale)); } // uint64_t ht_cas (hashtable_t *ht, void *key, uint64_t expected_val, uint64_t new_val) { TRACE("h2", "ht_cas: key %p ht %p", key, ht); TRACE("h2", "ht_cas: expected val %p new val %p", expected_val, new_val); assert(key != DOES_NOT_EXIST); assert(!IS_TAGGED(new_val, TAG1) && new_val != DOES_NOT_EXIST && new_val != TOMBSTONE); hti_t *hti = ht->hti; // Help with an ongoing copy. if (EXPECT_FALSE(hti->next != NULL)) { int done = hti_help_copy(hti); // Dispose of fully copied tables. if (done && hti->references == 0) { int r = SYNC_CAS(&hti->references, 0, -1); if (r == 0) { assert(hti->next); if (SYNC_CAS(&ht->hti, hti, hti->next) == hti) { nbd_defer_free((void *)hti->table); nbd_defer_free(hti); } } } } uint64_t old_val; uint32_t key_hash = (ht->key_type == NULL) ? murmur32_8b((uint64_t)key) : ht->key_type->hash(key); while ((old_val = hti_cas(hti, key, key_hash, expected_val, new_val)) == COPIED_VALUE) { assert(hti->next); hti = hti->next; } return old_val == TOMBSTONE ? DOES_NOT_EXIST : old_val; } // Remove the value in associated with . Returns the value removed, or DOES_NOT_EXIST if there was // no value for that key. uint64_t ht_remove (hashtable_t *ht, void *key) { hti_t *hti = ht->hti; uint64_t val; uint32_t key_hash = (ht->key_type == NULL) ? murmur32_8b((uint64_t)key) : ht->key_type->hash(key); do { val = hti_cas(hti, key, key_hash, CAS_EXPECT_WHATEVER, DOES_NOT_EXIST); if (val != COPIED_VALUE) return val == TOMBSTONE ? DOES_NOT_EXIST : val; assert(hti->next); hti = hti->next; assert(hti); } while (1); } // Returns the number of key-values pairs in uint64_t ht_count (hashtable_t *ht) { hti_t *hti = ht->hti; uint64_t count = 0; while (hti) { count += hti->count; hti = hti->next; } return count; } // Allocate and initialize a new hash table. hashtable_t *ht_alloc (const datatype_t *key_type) { hashtable_t *ht = nbd_malloc(sizeof(hashtable_t)); ht->key_type = key_type; ht->hti = (hti_t *)hti_alloc(ht, MIN_SCALE); return ht; } // Free and its internal structures. void ht_free (hashtable_t *ht) { hti_t *hti = ht->hti; do { for (uint32_t i = 0; i < (1 << hti->scale); ++i) { assert(hti->table[i].val == COPIED_VALUE || !IS_TAGGED(hti->table[i].val, TAG1)); if (ht->key_type != NULL && hti->table[i].key != DOES_NOT_EXIST) { nbd_free(GET_PTR(hti->table[i].key)); } } hti_t *next = hti->next; nbd_free((void *)hti->table); nbd_free(hti); hti = next; } while (hti); nbd_free(ht); } void ht_print (hashtable_t *ht) { hti_t *hti = ht->hti; while (hti) { printf("hti:%p scale:%u count:%d copied:%d\n", hti, hti->scale, hti->count, hti->num_entries_copied); for (int i = 0; i < (1 << hti->scale); ++i) { volatile entry_t *ent = hti->table + i; printf("[0x%x] %p:%p\n", i, (void *)ent->key, (void *)ent->val); if (i > 30) { printf("...\n"); break; } } hti = hti->next; } } ht_iter_t *ht_iter_begin (hashtable_t *ht, void *key) { assert(key == NULL); hti_t *hti = ht->hti; int rcount; do { while (((volatile hti_t *)hti)->next != NULL) { do { } while (hti_help_copy(hti) != TRUE); hti = hti->next; } int old = hti->references; do { rcount = old; if (rcount != -1) { old = SYNC_CAS(&hti->references, rcount, rcount + 1); } } while (rcount != old); } while (rcount == -1); ht_iter_t *iter = nbd_malloc(sizeof(ht_iter_t)); iter->hti = hti; iter->idx = -1; return iter; } uint64_t ht_iter_next (ht_iter_t *iter, void **key_ptr) { volatile entry_t *ent; uint64_t key; uint64_t val; uint64_t table_size = (1 << iter->hti->scale); do { iter->idx++; if (iter->idx == table_size) { return DOES_NOT_EXIST; } ent = &iter->hti->table[iter->idx]; key = ent->key; val = ent->val; } while (key == DOES_NOT_EXIST || val == DOES_NOT_EXIST || val == TOMBSTONE); if (key_ptr) { *key_ptr = (void *)key; } if (val == COPIED_VALUE) { uint32_t hash = (iter->hti->ht->key_type == NULL) ? murmur32_8b(key) : iter->hti->ht->key_type->hash((void *)key); val = hti_get(iter->hti->next, (void *)ent->key, hash); } return val; } void ht_iter_free (ht_iter_t *iter) { SYNC_ADD(&iter->hti->references, -1); nbd_free(iter); }