/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * Harris-Michael lock-free list-based set * http://www.research.ibm.com/people/m/michael/spaa-2002.pdf */ #include #include #include "common.h" #include "list.h" #include "mem.h" typedef struct node { map_key_t key; map_val_t val; uint64_t next; // next node } node_t; struct ll_iter { node_t *next; }; struct ll { node_t *head; const datatype_t *key_type; }; static node_t *node_alloc (map_key_t key, map_val_t val) { node_t *item = (node_t *)nbd_malloc(sizeof(node_t)); item->key = key; item->val = val; return item; } list_t *ll_alloc (const datatype_t *key_type) { list_t *ll = (list_t *)nbd_malloc(sizeof(list_t)); ll->key_type = key_type; ll->head = node_alloc(0, 0); ll->head->next = DOES_NOT_EXIST; return ll; } void ll_free (list_t *ll) { node_t *item = (node_t *)(size_t)ll->head->next; // the head can't be tagged while (item) { node_t *next = (node_t *)(size_t)STRIP_TAG(item->next, TAG1); nbd_free(item); item = next; } } uint64_t ll_count (list_t *ll) { uint64_t count = 0; node_t *item = (node_t *)(size_t)ll->head->next; while (item) { if (!IS_TAGGED(item->next, TAG1)) { count++; } item = (node_t *)(size_t)STRIP_TAG(item->next, TAG1); } return count; } static int find_pred (node_t **pred_ptr, node_t **item_ptr, list_t *ll, map_key_t key, int help_remove) { node_t *pred = ll->head; node_t *item = (node_t *)(size_t)pred->next; TRACE("l2", "find_pred: searching for key %p in list (head is %p)", key, pred); while (item != NULL) { uint64_t next = item->next; // A tag means an item is logically removed but not physically unlinked yet. while (EXPECT_FALSE(IS_TAGGED(next, TAG1))) { // Skip over logically removed items. if (!help_remove) { item = (node_t *)(size_t)STRIP_TAG(item->next, TAG1); if (EXPECT_FALSE(item == NULL)) break; TRACE("l3", "find_pred: skipping marked item %p (next is %p)", item, next); next = item->next; continue; } // Unlink logically removed items. TRACE("l3", "find_pred: unlinking marked item %p next is %p", item, next); uint64_t other = SYNC_CAS(&pred->next, (uint64_t)(size_t)item, STRIP_TAG(next, TAG1)); if (other == (uint64_t)(size_t)item) { TRACE("l2", "find_pred: unlinked item %p from pred %p", item, pred); item = (node_t *)(size_t)STRIP_TAG(next, TAG1); next = (item != NULL) ? item->next : DOES_NOT_EXIST; TRACE("l3", "find_pred: now current item is %p next is %p", item, next); // The thread that completes the unlink should free the memory. if (ll->key_type != NULL) { nbd_defer_free((void *)(size_t)((node_t *)(size_t)other)->key); } nbd_defer_free(((node_t *)(size_t)other)); } else { TRACE("l2", "find_pred: lost a race to unlink item %p from pred %p", item, pred); TRACE("l2", "find_pred: pred's link changed to %p", other, 0); if (IS_TAGGED(other, TAG1)) return find_pred(pred_ptr, item_ptr, ll, key, help_remove); // retry item = (node_t *)(size_t)other; next = (item != NULL) ? item->next : DOES_NOT_EXIST; } } if (EXPECT_FALSE(item == NULL)) break; TRACE("l3", "find_pred: visiting item %p (next is %p)", item, next); TRACE("l4", "find_pred: key %p val %p", item->key, item->val); int d; if (EXPECT_TRUE(ll->key_type == NULL)) { d = (uint64_t)item->key - (uint64_t)key; } else { d = ll->key_type->cmp((void *)(size_t)item->key, (void *)(size_t)key); } if (next != DOES_NOT_EXIST && ((node_t *)next)->key < item->key) { lwt_halt(); assert(0); } // If we reached the key (or passed where it should be), we found the right predesssor if (d >= 0) { if (pred_ptr != NULL) { *pred_ptr = pred; } *item_ptr = item; if (d == 0) { TRACE("l2", "find_pred: found matching item %p in list, pred is %p", item, pred); return TRUE; } TRACE("l2", "find_pred: found proper place for key %p in list, pred is %p", key, pred); return FALSE; } pred = item; item = (node_t *)(size_t)next; } // is not in . if (pred_ptr != NULL) { *pred_ptr = pred; } *item_ptr = NULL; TRACE("l2", "find_pred: reached end of list. last item is %p", pred, 0); return FALSE; } // Fast find. Do not help unlink partially removed nodes and do not return the found item's predecessor. map_val_t ll_lookup (list_t *ll, map_key_t key) { TRACE("l1", "ll_lookup: searching for key %p in list %p", key, ll); node_t *item; int found = find_pred(NULL, &item, ll, key, FALSE); // If we found an matching the key return its value. if (found) { map_val_t val = item->val; if (val != DOES_NOT_EXIST) { TRACE("l1", "ll_lookup: found item %p. val %p. returning item", item, item->val); return val; } } TRACE("l1", "ll_lookup: no item in the list matched the key", 0, 0); return DOES_NOT_EXIST; } map_val_t ll_cas (list_t *ll, map_key_t key, map_val_t expectation, map_val_t new_val) { TRACE("l1", "ll_cas: key %p list %p", key, ll); TRACE("l1", "ll_cas: expectation %p new value %p", expectation, new_val); ASSERT((int64_t)new_val > 0); do { node_t *pred, *old_item; int found = find_pred(&pred, &old_item, ll, key, TRUE); if (!found) { // There was not an item in the list that matches the key. if (EXPECT_FALSE((int64_t)expectation > 0 || expectation == CAS_EXPECT_EXISTS)) { TRACE("l1", "ll_cas: the expectation was not met, the list was not changed", 0, 0); return DOES_NOT_EXIST; // failure } ASSERT(expectation == CAS_EXPECT_DOES_NOT_EXIST || expectation == CAS_EXPECT_WHATEVER); // Create a new item and insert it into the list. TRACE("l2", "ll_cas: attempting to insert item between %p and %p", pred, pred->next); map_key_t new_key = (ll->key_type == NULL) ? key : (map_key_t)(size_t)ll->key_type->clone((void *)(size_t)key); node_t *new_item = node_alloc(new_key, new_val); uint64_t next = new_item->next = (uint64_t)(size_t)old_item; uint64_t other = SYNC_CAS(&pred->next, next, new_item); if (other == next) { TRACE("l1", "ll_cas: successfully inserted new item %p", new_item, 0); return DOES_NOT_EXIST; // success } // Lost a race. Failed to insert the new item into the list. TRACE("l1", "ll_cas: lost a race. CAS failed. expected pred's link to be %p but found %p", next, other); if (ll->key_type != NULL) { nbd_free((void *)(size_t)new_key); } nbd_free(new_item); continue; // retry } // Found an item in the list that matches the key. map_val_t old_item_val = old_item->val; do { // If the item's value is DOES_NOT_EXIST it means another thread removed the node out from under us. if (EXPECT_FALSE(old_item_val == DOES_NOT_EXIST)) { TRACE("l2", "ll_cas: lost a race, found an item but another thread removed it. retry", 0, 0); break; // retry } if (EXPECT_FALSE(expectation == CAS_EXPECT_DOES_NOT_EXIST)) { TRACE("l1", "ll_cas: found an item %p in the list that matched the key. the expectation was " "not met, the list was not changed", old_item, old_item_val); return old_item_val; // failure } // Use a CAS and not a SWAP. If the node is in the process of being removed and we used a SWAP, we could // replace DOES_NOT_EXIST with our value. Then another thread that is updating the value could think it // succeeded and return our value even though we indicated that the node has been removed. If the CAS // fails it means another thread either removed the node or updated its value. map_val_t ret_val = SYNC_CAS(&old_item->val, old_item_val, new_val); if (ret_val == old_item_val) { TRACE("l1", "ll_cas: the CAS succeeded. updated the value of the item", 0, 0); return ret_val; // success } TRACE("l2", "ll_cas: lost a race. the CAS failed. another thread changed the item's value", 0, 0); old_item_val = ret_val; } while (1); } while (1); } map_val_t ll_remove (list_t *ll, map_key_t key) { TRACE("l1", "ll_remove: removing item with key %p from list %p", key, ll); node_t *pred; node_t *item; int found = find_pred(&pred, &item, ll, key, TRUE); if (!found) { TRACE("l1", "ll_remove: remove failed, an item with a matching key does not exist in the list", 0, 0); return DOES_NOT_EXIST; } // Mark removed. If multiple threads try to remove the same item only one of them should succeed. uint64_t next; uint64_t old_next = item->next; do { next = old_next; old_next = SYNC_CAS(&item->next, next, TAG_VALUE(next, TAG1)); if (IS_TAGGED(old_next, TAG1)) { TRACE("l1", "ll_remove: lost a race -- %p is already marked for removal by another thread", item, 0); return DOES_NOT_EXIST; } } while (next != old_next); TRACE("l2", "ll_remove: logically removed item %p", item, 0); ASSERT(IS_TAGGED(((volatile node_t *)item)->next, TAG1)); // Atomically swap out the item's value in case another thread is updating the item while we are // removing it. This establishes which operation occurs first logically, the update or the remove. map_val_t val = SYNC_SWAP(&item->val, DOES_NOT_EXIST); TRACE("l2", "ll_remove: replaced item's val %p with DOES_NOT_EXIT", val, 0); // Unlink from . If we lose a race to another thread just back off. It is safe to leave the // item logically removed for a later call (or some other thread) to physically unlink. By marking the // item earlier, we logically removed it. TRACE("l2", "ll_remove: unlink the item by linking its pred %p to its successor %p", pred, next); uint64_t other; if ((other = SYNC_CAS(&pred->next, (uint64_t)(size_t)item, next)) != (uint64_t)(size_t)item) { TRACE("l1", "ll_remove: unlink failed; pred's link changed from %p to %p", item, other); return val; } // The thread that completes the unlink should free the memory. if (ll->key_type != NULL) { nbd_defer_free((void *)(size_t)item->key); } nbd_defer_free(item); TRACE("l1", "ll_remove: successfully unlinked item %p from the list", item, 0); return val; } void ll_print (list_t *ll) { uint64_t next = ll->head->next; int i = 0; while (next != DOES_NOT_EXIST) { if (IS_TAGGED(next, TAG1)) { printf("*"); } node_t *item = (node_t *)(size_t)STRIP_TAG(next, TAG1); if (item == NULL) break; printf("%p:0x%llx ", item, item->key); fflush(stdout); if (i++ > 30) { printf("..."); break; } next = item->next; } printf("\n"); } ll_iter_t *ll_iter_begin (list_t *ll, map_key_t key) { ll_iter_t *iter = (ll_iter_t *)nbd_malloc(sizeof(ll_iter_t)); find_pred(NULL, &iter->next, ll, key, FALSE); return iter; } map_val_t ll_iter_next (ll_iter_t *iter, map_key_t *key_ptr) { assert(iter); node_t *item = iter->next; while (item != NULL && IS_TAGGED(item->next, TAG1)) { item = (node_t *)(size_t)STRIP_TAG(item->next, TAG1); } if (item == NULL) { iter->next = NULL; return DOES_NOT_EXIST; } iter->next = (node_t *)(size_t)STRIP_TAG(item->next, TAG1); if (key_ptr != NULL) { *key_ptr = item->key; } return item->val; } void ll_iter_free (ll_iter_t *iter) { nbd_free(iter); }