/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * Harris-Michael lock-free list-based set * http://www.research.ibm.com/people/m/michael/spaa-2002.pdf */ #include #include #include "common.h" #include "list.h" #include "mem.h" #ifdef LIST_USE_HAZARD_POINTER #include "hazard.h" #else #include "rcu.h" #endif typedef struct node { map_key_t key; map_val_t val; markable_t next; // next node } node_t; struct ll_iter { node_t *pred; }; struct ll { node_t *head; const datatype_t *key_type; }; // Marking the field of a node logically removes it from the list #define MARK_NODE(x) TAG_VALUE((markable_t)(x), 0x1) #define HAS_MARK(x) (IS_TAGGED((x), 0x1) == 0x1) #define GET_NODE(x) ((node_t *)(x)) #define STRIP_MARK(x) ((node_t *)STRIP_TAG((x), 0x1)) static node_t *node_alloc (map_key_t key, map_val_t val) { node_t *item = (node_t *)nbd_malloc(sizeof(node_t)); assert(!HAS_MARK((size_t)item)); item->key = key; item->val = val; return item; } list_t *ll_alloc (const datatype_t *key_type) { list_t *ll = (list_t *)nbd_malloc(sizeof(list_t)); ll->key_type = key_type; ll->head = node_alloc(0, 0); ll->head->next = DOES_NOT_EXIST; return ll; } void ll_free (list_t *ll) { node_t *item = STRIP_MARK(ll->head->next); while (item != NULL) { node_t *next = STRIP_MARK(item->next); if (ll->key_type != NULL) { nbd_free((void *)item->key); } nbd_free(item); item = next; } } size_t ll_count (list_t *ll) { size_t count = 0; node_t *item = STRIP_MARK(ll->head->next); while (item) { if (!HAS_MARK(item->next)) { count++; } item = STRIP_MARK(item->next); } return count; } #ifdef LIST_USE_HAZARD_POINTER static void nbd_free_node (node_t *x) { nbd_free((void *)x->key); nbd_free(x); } #endif static int find_pred (node_t **pred_ptr, node_t **item_ptr, list_t *ll, map_key_t key, int help_remove) { node_t *pred = ll->head; node_t *item = GET_NODE(pred->next); TRACE("l2", "find_pred: searching for key %p in list (head is %p)", key, pred); #ifdef LIST_USE_HAZARD_POINTER haz_t *temp, *hp0 = haz_get_static(0), *hp1 = haz_get_static(1); #endif while (item != NULL) { #ifdef LIST_USE_HAZARD_POINTER haz_set(hp0, item); if (STRIP_MARK(pred->next) != item) return find_pred(pred_ptr, item_ptr, ll, key, help_remove); // retry #endif markable_t next = item->next; // A mark means the node is logically removed but not physically unlinked yet. while (EXPECT_FALSE(HAS_MARK(next))) { // Skip over logically removed items. if (!help_remove) { item = STRIP_MARK(item->next); if (EXPECT_FALSE(item == NULL)) break; TRACE("l3", "find_pred: skipping marked item %p (next is %p)", item, next); next = item->next; continue; } // Unlink logically removed items. TRACE("l3", "find_pred: unlinking marked item %p next is %p", item, next); markable_t other = SYNC_CAS(&pred->next, (markable_t)item, (markable_t)STRIP_MARK(next)); if (other == (markable_t)item) { TRACE("l2", "find_pred: unlinked item %p from pred %p", item, pred); item = STRIP_MARK(next); next = (item != NULL) ? item->next : DOES_NOT_EXIST; TRACE("l3", "find_pred: now current item is %p next is %p", item, next); // The thread that completes the unlink should free the memory. #ifdef LIST_USE_HAZARD_POINTER free_t free_ = (ll->key_type != NULL ? (free_t)nbd_free_node : nbd_free); haz_defer_free(GET_NODE(other), free_); #else if (ll->key_type != NULL) { rcu_defer_free((void *)GET_NODE(other)->key); } rcu_defer_free(GET_NODE(other)); #endif } else { TRACE("l2", "find_pred: lost a race to unlink item %p from pred %p", item, pred); TRACE("l2", "find_pred: pred's link changed to %p", other, 0); if (HAS_MARK(other)) return find_pred(pred_ptr, item_ptr, ll, key, help_remove); // retry item = GET_NODE(other); next = (item != NULL) ? item->next : DOES_NOT_EXIST; } } if (EXPECT_FALSE(item == NULL)) break; TRACE("l3", "find_pred: visiting item %p (next is %p)", item, next); TRACE("l4", "find_pred: key %p val %p", item->key, item->val); int d; if (EXPECT_TRUE(ll->key_type == NULL)) { d = item->key - key; } else { d = ll->key_type->cmp((void *)item->key, (void *)key); } // If we reached the key (or passed where it should be), we found the right predesssor if (d >= 0) { if (pred_ptr != NULL) { *pred_ptr = pred; } if (item_ptr != NULL) { *item_ptr = item; } if (d == 0) { TRACE("l2", "find_pred: found matching item %p in list, pred is %p", item, pred); return TRUE; } TRACE("l2", "find_pred: found proper place for key %p in list, pred is %p", key, pred); return FALSE; } pred = item; #ifdef LIST_USE_HAZARD_POINTER temp = hp0; hp0 = hp1; hp1 = temp; #endif item = GET_NODE(next); } // is not in . if (pred_ptr != NULL) { *pred_ptr = pred; } *item_ptr = NULL; TRACE("l2", "find_pred: reached end of list. last item is %p", pred, 0); return FALSE; } // Fast find. Do not help unlink partially removed nodes and do not return the found item's predecessor. map_val_t ll_lookup (list_t *ll, map_key_t key) { TRACE("l1", "ll_lookup: searching for key %p in list %p", key, ll); node_t *item; int found = find_pred(NULL, &item, ll, key, FALSE); // If we found an matching the key return its value. if (found) { map_val_t val = item->val; if (val != DOES_NOT_EXIST) { TRACE("l1", "ll_lookup: found item %p. val %p. returning item", item, item->val); return val; } } TRACE("l1", "ll_lookup: no item in the list matched the key", 0, 0); return DOES_NOT_EXIST; } map_val_t ll_cas (list_t *ll, map_key_t key, map_val_t expectation, map_val_t new_val) { TRACE("l1", "ll_cas: key %p list %p", key, ll); TRACE("l1", "ll_cas: expectation %p new value %p", expectation, new_val); ASSERT((int64_t)new_val > 0); do { node_t *pred, *old_item; int found = find_pred(&pred, &old_item, ll, key, TRUE); if (!found) { // There was not an item in the list that matches the key. if (EXPECT_FALSE(expectation != CAS_EXPECT_DOES_NOT_EXIST && expectation != CAS_EXPECT_WHATEVER)) { TRACE("l1", "ll_cas: the expectation was not met, the list was not changed", 0, 0); return DOES_NOT_EXIST; // failure } // Create a new item and insert it into the list. TRACE("l2", "ll_cas: attempting to insert item between %p and %p", pred, pred->next); map_key_t new_key = ll->key_type == NULL ? key : (map_key_t)ll->key_type->clone((void *)key); node_t *new_item = node_alloc(new_key, new_val); markable_t next = new_item->next = (markable_t)old_item; markable_t other = SYNC_CAS(&pred->next, (markable_t)next, (markable_t)new_item); if (other == next) { TRACE("l1", "ll_cas: successfully inserted new item %p", new_item, 0); return DOES_NOT_EXIST; // success } // Lost a race. Failed to insert the new item into the list. TRACE("l1", "ll_cas: lost a race. CAS failed. expected pred's link to be %p but found %p", next, other); if (ll->key_type != NULL) { nbd_free((void *)new_key); } nbd_free(new_item); continue; // retry } // Found an item in the list that matches the key. map_val_t old_item_val = old_item->val; do { // If the item's value is DOES_NOT_EXIST it means another thread removed the node out from under us. if (EXPECT_FALSE(old_item_val == DOES_NOT_EXIST)) { TRACE("l2", "ll_cas: lost a race, found an item but another thread removed it. retry", 0, 0); break; // retry } if (EXPECT_FALSE(expectation == CAS_EXPECT_DOES_NOT_EXIST)) { TRACE("l1", "ll_cas: found an item %p in the list that matched the key. the expectation was " "not met, the list was not changed", old_item, old_item_val); return old_item_val; // failure } // Use a CAS and not a SWAP. If the node is in the process of being removed and we used a SWAP, we could // replace DOES_NOT_EXIST with our value. Then another thread that is updating the value could think it // succeeded and return our value even though we indicated that the node has been removed. If the CAS // fails it means another thread either removed the node or updated its value. map_val_t ret_val = SYNC_CAS(&old_item->val, old_item_val, new_val); if (ret_val == old_item_val) { TRACE("l1", "ll_cas: the CAS succeeded. updated the value of the item", 0, 0); return ret_val; // success } TRACE("l2", "ll_cas: lost a race. the CAS failed. another thread changed the item's value", 0, 0); old_item_val = ret_val; } while (1); } while (1); } map_val_t ll_remove (list_t *ll, map_key_t key) { TRACE("l1", "ll_remove: removing item with key %p from list %p", key, ll); node_t *pred; node_t *item; int found = find_pred(&pred, &item, ll, key, TRUE); if (!found) { TRACE("l1", "ll_remove: remove failed, an item with a matching key does not exist in the list", 0, 0); return DOES_NOT_EXIST; } // Mark removed. If multiple threads try to remove the same item only one of them should succeed. markable_t next; markable_t old_next = item->next; do { next = old_next; old_next = SYNC_CAS(&item->next, next, MARK_NODE(STRIP_MARK(next))); if (HAS_MARK(old_next)) { TRACE("l1", "ll_remove: lost a race -- %p is already marked for removal by another thread", item, 0); return DOES_NOT_EXIST; } } while (next != old_next); TRACE("l2", "ll_remove: logically removed item %p", item, 0); ASSERT(HAS_MARK(VOLATILE_DEREF(item).next)); // Atomically swap out the item's value in case another thread is updating the item while we are // removing it. This establishes which operation occurs first logically, the update or the remove. map_val_t val = SYNC_SWAP(&item->val, DOES_NOT_EXIST); TRACE("l2", "ll_remove: replaced item's val %p with DOES_NOT_EXIT", val, 0); // Unlink from . If we lose a race to another thread just back off. It is safe to leave the // item logically removed for a later call (or some other thread) to physically unlink. By marking the // item earlier, we logically removed it. TRACE("l2", "ll_remove: unlink the item by linking its pred %p to its successor %p", pred, next); markable_t other; if ((other = SYNC_CAS(&pred->next, (markable_t)item, next)) != (markable_t)item) { TRACE("l1", "ll_remove: unlink failed; pred's link changed from %p to %p", item, other); return val; } // The thread that completes the unlink should free the memory. #ifdef LIST_USE_HAZARD_POINTER free_t free_ = (ll->key_type != NULL ? (free_t)nbd_free_node : nbd_free); haz_defer_free(GET_NODE(item), free_); #else if (ll->key_type != NULL) { rcu_defer_free((void *)item->key); } rcu_defer_free(item); #endif TRACE("l1", "ll_remove: successfully unlinked item %p from the list", item, 0); return val; } void ll_print (list_t *ll, int verbose) { if (verbose) { markable_t next = ll->head->next; int i = 0; while (next != DOES_NOT_EXIST) { node_t *item = STRIP_MARK(next); if (item == NULL) break; printf("%s%p:0x%llx ", HAS_MARK(item->next) ? "*" : "", item, (uint64_t)item->key); fflush(stdout); if (i++ > 30) { printf("..."); break; } next = item->next; } printf("\n"); } printf("count:%llu\n", (uint64_t)ll_count(ll)); } ll_iter_t *ll_iter_begin (list_t *ll, map_key_t key) { ll_iter_t *iter = (ll_iter_t *)nbd_malloc(sizeof(ll_iter_t)); if (key != DOES_NOT_EXIST) { find_pred(&iter->pred, NULL, ll, key, FALSE); } else { iter->pred = ll->head; } #ifdef LIST_USE_HAZARD_POINTER haz_register_dynamic((void **)&iter->pred); #endif return iter; } map_val_t ll_iter_next (ll_iter_t *iter, map_key_t *key_ptr) { assert(iter); if (iter->pred == NULL) return DOES_NOT_EXIST; // advance iterator to next item; skip items that have been removed markable_t item; #ifdef LIST_USE_HAZARD_POINTER haz_t *hp0 = haz_get_static(0); #endif do { #ifndef LIST_USE_HAZARD_POINTER item = iter->pred->next; #else //LIST_USE_HAZARD_POINTER do { item = iter->pred->next; haz_set(hp0, STRIP_MARK(item)); } while (item != VOLATILE_DEREF(iter->pred).next); #endif//LIST_USE_HAZARD_POINTER iter->pred = STRIP_MARK(item); if (iter->pred == NULL) return DOES_NOT_EXIST; } while (HAS_MARK(item)); if (key_ptr != NULL) { *key_ptr = GET_NODE(item)->key; } return GET_NODE(item)->val; } void ll_iter_free (ll_iter_t *iter) { #ifdef LIST_USE_HAZARD_POINTER haz_unregister_dynamic((void **)&iter->pred); #endif nbd_free(iter); }