/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * Implementation of the lock-free skiplist data-structure created by Maurice Herlihy, Yossi Lev, * and Nir Shavit. See Herlihy's and Shivit's book "The Art of Multiprocessor Programming". * http://www.amazon.com/Art-Multiprocessor-Programming-Maurice-Herlihy/dp/0123705916/ * * See also Kir Fraser's dissertation "Practical Lock Freedom". * www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf * * This code is written for the x86 memory-model. The algorithim depends on certain stores and * loads being ordered. Be careful, this code won't work correctly on platforms with weaker memory * models if you don't add memory barriers in the right places. */ #include #include #include "common.h" #include "runtime.h" #include "mlocal.h" #include "nstring.h" #include "mem.h" #include "tls.h" // Setting MAX_LEVEL to 0 essentially makes this data structure the Harris-Michael lock-free list // (in list.c). #define MAX_LEVEL 31 typedef struct node { nstring_t *key; uint64_t val; int top_level; struct node *next[]; } node_t; struct sl { node_t *head; }; static const map_impl_t sl_map_impl = { (map_alloc_t)sl_alloc, (map_cas_t)sl_cas, (map_get_t)sl_lookup, (map_remove_t)sl_remove, (map_count_t)sl_count, (map_print_t)sl_print, (map_free_t)sl_free }; const map_impl_t *MAP_TYPE_SKIPLIST = &sl_map_impl; static int random_level (void) { unsigned r = nbd_rand(); if (r & 1) return 0; #if MAX_LEVEL < 31 r |= 1 << (MAX_LEVEL+1); #endif int n = __builtin_ctz(r)-1; assert(n <= MAX_LEVEL); return n; } static node_t *node_alloc (int level, const void *key_data, uint32_t key_len, uint64_t val) { assert(level >= 0 && level <= MAX_LEVEL); size_t sz = sizeof(node_t) + (level + 1) * sizeof(node_t *); node_t *item = (node_t *)nbd_malloc(sz); memset(item, 0, sz); // If is -1 it indicates is an integer and not a pointer item->key = (key_len == (unsigned)-1) ? (void *)TAG_VALUE(key_data) : ns_alloc(key_data, key_len); item->val = val; item->top_level = level; return item; } static void node_free (node_t *item) { if (!IS_TAGGED(item->key)) { nbd_free(item->key); } nbd_free(item); } static void node_defer_free (node_t *item) { if (!IS_TAGGED(item->key)) { nbd_defer_free(item->key); } nbd_defer_free(item); } skiplist_t *sl_alloc (void) { skiplist_t *sl = (skiplist_t *)nbd_malloc(sizeof(skiplist_t)); sl->head = node_alloc(MAX_LEVEL, " ", 0, 0); memset(sl->head->next, 0, (MAX_LEVEL+1) * sizeof(skiplist_t *)); return sl; } void sl_free (skiplist_t *sl) { node_t *item = sl->head->next[0]; while (item) { node_t *next = (node_t *)STRIP_TAG(item->next[0]); nbd_free(item); item = next; } } uint64_t sl_count (skiplist_t *sl) { uint64_t count = 0; node_t *item = sl->head->next[0]; while (item) { count++; item = (node_t *)STRIP_TAG(item->next[0]); } return count; } static node_t *find_preds (node_t **preds, node_t **succs, int n, skiplist_t *sl, const void *key_data, uint32_t key_len, int help_remove) { node_t *pred = sl->head; node_t *item = NULL; TRACE("s2", "find_preds: searching for key %p in sl (head is %p)", key_data, pred); int d; int start_level = MAX_LEVEL; #if MAX_LEVEL > 2 // Optimization for small lists. No need to traverse empty higher levels. start_level = 2; while (pred->next[start_level+1] != NULL) { start_level += start_level - 1; if (EXPECT_FALSE(start_level >= MAX_LEVEL)) { start_level = MAX_LEVEL; break; } } if (EXPECT_FALSE(start_level < n)) { start_level = n; } #endif // Traverse the levels of from the top level to the bottom for (int level = start_level; level >= 0; --level) { TRACE("s3", "find_preds: level %llu", level, 0); item = pred->next[level]; if (EXPECT_FALSE(IS_TAGGED(item))) { TRACE("s2", "find_preds: pred %p is marked for removal (item %p); retry", pred, item); return find_preds(preds, succs, n, sl, key_data, key_len, help_remove); // retry } while (item != NULL) { node_t *next = item->next[level]; // A tag means an item is logically removed but not physically unlinked yet. while (EXPECT_FALSE(IS_TAGGED(next))) { // Skip over logically removed items. if (!help_remove) { item = (node_t *)STRIP_TAG(item->next); if (EXPECT_FALSE(item == NULL)) break; TRACE("s3", "find_preds: skipping marked item %p (next is %p)", item, next); next = item->next[level]; continue; } // Unlink logically removed items. node_t *other; TRACE("s3", "find_preds: unlinking marked item %p; next is %p", item, next); if ((other = SYNC_CAS(&pred->next[level], item, STRIP_TAG(next))) == item) { item = (node_t *)STRIP_TAG(next); if (EXPECT_FALSE(item == NULL)) break; next = item->next[level]; TRACE("s3", "find_preds: now the current item is %p next is %p", item, next); // The thread that completes the unlink should free the memory. if (level == 0) { node_defer_free(other); } } else { TRACE("s2", "find_preds: lost race to unlink item %p from pred %p", item, pred); TRACE("s2", "find_preds: pred's link changed to %p", other, 0); if (IS_TAGGED(other)) return find_preds(preds, succs, n, sl, key_data, key_len, help_remove); // retry item = other; if (EXPECT_FALSE(item == NULL)) break; next = item->next[level]; } } if (EXPECT_FALSE(item == NULL)) break; TRACE("s3", "find_preds: visiting item %p (next is %p)", item, next); TRACE("s4", "find_preds: key %p val %p", STRIP_TAG(item->key), item->val); // A tagged key is an integer, otherwise it is a pointer to a string if (IS_TAGGED(item->key)) { d = (STRIP_TAG(item->key) - (uint64_t)key_data); } else { int item_key_len = item->key->len; int len = (key_len < item_key_len) ? key_len : item_key_len; d = memcmp(item->key->data, key_data, len); if (d == 0) { d = item_key_len - key_len; } } if (d >= 0) { TRACE("s2", "find_preds: found pred %p item %p", pred, item); break; } pred = item; item = next; } // The cast to unsigned is for the case when n is -1. if ((unsigned)level <= (unsigned)n) { if (preds != NULL) { preds[level] = pred; } if (succs != NULL) { succs[level] = item; } } } // fill in empty levels if (n == -1 && item != NULL) { for (int level = start_level + 1; level <= item->top_level; ++level) { preds[level] = sl->head; } } if (d == 0) { TRACE("s2", "find_preds: found matching item %p in skiplist, pred is %p", item, pred); return item; } TRACE("s2", "find_preds: found proper place for key %p in skiplist, pred is %p. returning null", key_data, pred); return NULL; } // Fast find that does not help unlink partially removed nodes and does not return the node's predecessors. uint64_t sl_lookup (skiplist_t *sl, const void *key_data, uint32_t key_len) { TRACE("s1", "sl_lookup: searching for key %p in skiplist %p", key_data, sl); node_t *item = find_preds(NULL, NULL, 0, sl, key_data, key_len, FALSE); // If we found an matching the return its value. if (item != NULL) { uint64_t val = item->val; if (val != DOES_NOT_EXIST) { TRACE("s1", "sl_lookup: found item %p. val %p. returning item", item, item->val); return val; } } TRACE("l1", "sl_lookup: no item in the skiplist matched the key", 0, 0); return DOES_NOT_EXIST; } uint64_t sl_cas (skiplist_t *sl, const void *key_data, uint32_t key_len, uint64_t expectation, uint64_t new_val) { TRACE("s1", "sl_cas: key %p skiplist %p", key_data, sl); TRACE("s1", "sl_cas: expectation %p new value %p", expectation, new_val); ASSERT((int64_t)new_val > 0); node_t *preds[MAX_LEVEL+1]; node_t *nexts[MAX_LEVEL+1]; node_t *new_item = NULL; int n = random_level(); do { node_t *old_item = find_preds(preds, nexts, n, sl, key_data, key_len, TRUE); if (old_item == NULL) { // There was not an item in the skiplist that matches the key. if (EXPECT_FALSE((int64_t)expectation > 0 || expectation == CAS_EXPECT_EXISTS)) { TRACE("l1", "sl_cas: the expectation was not met, the skiplist was not changed", 0, 0); return DOES_NOT_EXIST; // failure } ASSERT(expectation == CAS_EXPECT_DOES_NOT_EXIST || expectation == CAS_EXPECT_WHATEVER); // First insert into the bottom level. TRACE("s3", "sl_cas: attempting to insert item between %p and %p", preds[0], nexts[0]); new_item = node_alloc(n, key_data, key_len, new_val); node_t *pred = preds[0]; node_t *next = new_item->next[0] = nexts[0]; for (int level = 1; level <= new_item->top_level; ++level) { new_item->next[level] = nexts[level]; } node_t *other = SYNC_CAS(&pred->next[0], next, new_item); if (other == next) { TRACE("s3", "sl_cas: successfully inserted item %p at level 0", new_item, 0); break; // success } TRACE("s3", "sl_cas: failed to change pred's link: expected %p found %p", next, other); node_free(new_item); continue; } // Found an item in the skiplist that matches the key. uint64_t old_item_val = old_item->val; do { // If the item's value is DOES_NOT_EXIST it means another thread removed the node out from under us. if (EXPECT_FALSE(old_item_val == DOES_NOT_EXIST)) { TRACE("s2", "sl_cas: lost a race, found an item but another thread removed it. retry", 0, 0); break; // retry } if (EXPECT_FALSE(expectation == CAS_EXPECT_DOES_NOT_EXIST)) { TRACE("s1", "sl_cas: found an item %p in the skiplist that matched the key. the expectation was " "not met, the skiplist was not changed", old_item, old_item_val); return old_item_val; // failure } // Use a CAS and not a SWAP. If the node is in the process of being removed and we used a SWAP, we could // replace DOES_NOT_EXIST with our value. Then another thread that is updating the value could think it // succeeded and return our value even though we indicated that the node has been removed. If the CAS // fails it means another thread either removed the node or updated its value. uint64_t ret_val = SYNC_CAS(&old_item->val, old_item_val, new_val); if (ret_val == old_item_val) { TRACE("s1", "sl_cas: the CAS succeeded. updated the value of the item", 0, 0); return ret_val; // success } TRACE("s2", "sl_cas: lost a race. the CAS failed. another thread changed the item's value", 0, 0); old_item_val = ret_val; } while (1); } while (1); // Link into from the bottom up. for (int level = 1; level <= new_item->top_level; ++level) { node_t *pred = preds[level]; node_t *next = nexts[level]; do { TRACE("s3", "sl_cas: attempting to insert item between %p and %p", pred, next); node_t *other = SYNC_CAS(&pred->next[level], next, new_item); if (other == next) { TRACE("s3", "sl_cas: successfully inserted item %p at level %llu", new_item, level); break; // success } TRACE("s3", "sl_cas: failed to change pred's link: expected %p found %p", next, other); find_preds(preds, nexts, new_item->top_level, sl, key_data, key_len, TRUE); pred = preds[level]; next = nexts[level]; // Update 's next pointer do { // There in no need to continue linking in the item if another thread removed it. node_t *old_next = ((volatile node_t *)new_item)->next[level]; if (IS_TAGGED(old_next)) return new_val; // Use a CAS so we do not inadvertantly stomp on a mark another thread placed on the item. if (old_next == next || SYNC_CAS(&new_item->next[level], old_next, next) == old_next) break; } while (1); } while (1); } return new_val; } uint64_t sl_remove (skiplist_t *sl, const void *key_data, uint32_t key_len) { TRACE("s1", "sl_remove: removing item with key %p from skiplist %p", key_data, sl); node_t *preds[MAX_LEVEL+1]; node_t *item = find_preds(preds, NULL, -1, sl, key_data, key_len, TRUE); if (item == NULL) { TRACE("s3", "sl_remove: remove failed, an item with a matching key does not exist in the skiplist", 0, 0); return DOES_NOT_EXIST; } // Mark removed at each level of from the top down. This must be atomic. If multiple threads // try to remove the same item only one of them should succeed. Marking the bottom level establishes which of // them succeeds. for (int level = item->top_level; level >= 0; --level) { if (EXPECT_FALSE(IS_TAGGED(item->next[level]))) { TRACE("s3", "sl_remove: %p is already marked for removal by another thread", item, 0); if (level == 0) return DOES_NOT_EXIST; continue; } node_t *next; node_t *old_next = item->next[level]; do { next = old_next; old_next = SYNC_CAS(&item->next[level], next, TAG_VALUE(next)); if (IS_TAGGED(old_next)) { TRACE("s2", "sl_remove: lost race -- %p is already marked for removal by another thread", item, 0); if (level == 0) return DOES_NOT_EXIST; } } while (!IS_TAGGED(old_next) || next != old_next); } // This has to be an atomic swap in case another thread is updating the item while we are removing it. uint64_t val = SYNC_SWAP(&item->val, DOES_NOT_EXIST); TRACE("s2", "sl_remove: replaced item's val %p with DOES_NOT_EXIT", val, 0); // Unlink from . If we lose a race to another thread just back off. It is safe to leave the // item partially unlinked for a later call (or some other thread) to physically unlink. By marking the // item earlier, we logically removed it. int level = item->top_level; while (level >= 0) { node_t *pred = preds[level]; node_t *next = item->next[level]; TRACE("s2", "sl_remove: unlink the item by linking its pred %p to it's successor %p", pred, STRIP_TAG(next)); node_t *other = NULL; if ((other = SYNC_CAS(&pred->next[level], item, STRIP_TAG(next))) != item) { TRACE("s1", "sl_remove: unlink failed; pred's link changed from %p to %p", item, other); return val; } --level; } // The thread that completes the unlink should free the memory. TRACE("s1", "sl_remove: successfully unlinked item %p from the skiplist", item, 0); node_defer_free(item); return val; } void sl_print (skiplist_t *sl) { for (int level = MAX_LEVEL; level >= 0; --level) { node_t *item = sl->head; if (item->next[level] == NULL) continue; printf("(%d) ", level); while (item) { node_t *next = item->next[level]; printf("%s%p ", IS_TAGGED(next) ? "*" : "", item); item = (node_t *)STRIP_TAG(next); } printf("\n"); fflush(stdout); } printf("\n"); node_t *item = sl->head; while (item) { int is_marked = IS_TAGGED(item->next[0]); if (IS_TAGGED(item->key)) { printf("%s%p:%llx ", is_marked ? "*" : "", item, STRIP_TAG(item->key)); } else { printf("%s%p:%s ", is_marked ? "*" : "", item, (char *)item->key->data); } if (item != sl->head) { printf("[%d]", item->top_level); } else { printf("[*]"); } for (int level = 1; level <= item->top_level; ++level) { node_t *next = (node_t *)STRIP_TAG(item->next[level]); is_marked = IS_TAGGED(item->next[0]); printf(" %p%s", next, is_marked ? "*" : ""); if (item == sl->head && item->next[level] == NULL) break; } printf("\n"); fflush(stdout); item = (node_t *)STRIP_TAG(item->next[0]); } }