/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * Harris-Michael lock-free list-based set * http://www.research.ibm.com/people/m/michael/spaa-2002.pdf */ #include #include #include "common.h" #include "struct.h" #include "mem.h" typedef struct node { uint64_t key; uint64_t value; struct node *next; } node_t; typedef struct list { node_t *head; node_t *last; } list_t; node_t *node_alloc (uint64_t key, uint64_t value) { node_t *item = (node_t *)nbd_malloc(sizeof(node_t)); memset(item, 0, sizeof(node_t)); item->key = key; item->value = value; return item; } list_t *list_alloc (void) { list_t *list = (list_t *)nbd_malloc(sizeof(list_t)); list->head = node_alloc(0, 0); list->last = node_alloc((uint64_t)-1, 0); list->head->next = list->last; return list; } static node_t *find_pred (node_t **pred_ptr, list_t *list, uint64_t key, int help_remove) { node_t *pred = list->head; node_t *item = pred->next; TRACE("l3", "find_pred: searching for key %p in list (head is %p)", key, pred); #ifndef NDEBUG int count = 0; #endif do { node_t *next = item->next; TRACE("l3", "find_pred: visiting item %p (next %p)", item, next); TRACE("l3", "find_pred: key %p", item->key, item->value); // Marked items are logically removed, but not unlinked yet. while (EXPECT_FALSE(IS_TAGGED(next))) { // Skip over partially removed items. if (!help_remove) { item = (node_t *)STRIP_TAG(item->next); next = item->next; continue; } // Unlink partially removed items. node_t *other; if ((other = SYNC_CAS(&pred->next, item, STRIP_TAG(next))) == item) { item = (node_t *)STRIP_TAG(next); next = item->next; TRACE("l3", "find_pred: unlinked item %p from pred %p", item, pred); TRACE("l3", "find_pred: now item is %p next is %p", item, next); // The thread that completes the unlink should free the memory. nbd_defer_free(other); } else { TRACE("l3", "find_pred: lost race to unlink item from pred %p; its link changed to %p", pred, other); if (IS_TAGGED(other)) return find_pred(pred_ptr, list, key, help_remove); // retry item = other; next = item->next; } } // If we reached the key (or passed where it should be), we found the right predesssor if (item->key >= key) { TRACE("l3", "find_pred: found pred %p item %p", pred, item); if (pred_ptr != NULL) { *pred_ptr = pred; } return item; } assert(count++ < 18); pred = item; item = next; } while (1); } // Fast find. Do not help unlink partially removed nodes and do not return the found item's predecessor. uint64_t list_lookup (list_t *list, uint64_t key) { TRACE("l3", "list_lookup: searching for key %p in list %p", key, list); node_t *item = find_pred(NULL, list, key, FALSE); // If we found an matching the return its value. return (item->key == key) ? item->value : DOES_NOT_EXIST; } // Insert the , if it doesn't already exist in the uint64_t list_add (list_t *list, uint64_t key, uint64_t value) { TRACE("l3", "list_add: inserting key %p value %p", key, value); node_t *pred; node_t *item = NULL; do { node_t *next = find_pred(&pred, list, key, TRUE); // If a node matching already exists in the list, return its value. if (next->key == key) { TRACE("l3", "list_add: there is already an item %p (value %p) with the same key", next, next->value); if (EXPECT_FALSE(item != NULL)) { nbd_free(item); } return next->value; } TRACE("l3", "list_add: attempting to insert item between %p and %p", pred, next); if (EXPECT_TRUE(item == NULL)) { item = node_alloc(key, value); } item->next = next; node_t *other = SYNC_CAS(&pred->next, next, item); if (other == next) { TRACE("l3", "list_add: successfully inserted item %p", item, 0); return DOES_NOT_EXIST; // success } TRACE("l3", "list_add: failed to change pred's link: expected %p found %p", next, other); } while (1); } uint64_t list_remove (list_t *list, uint64_t key) { TRACE("l3", "list_remove: removing item with key %p from list %p", key, list); node_t *pred; node_t *item = find_pred(&pred, list, key, TRUE); if (item->key != key) { TRACE("l3", "list_remove: remove failed, an item with a matching key does not exist in the list", 0, 0); return DOES_NOT_EXIST; } // Mark removed. This must be atomic. If multiple threads try to remove the same item // only one of them should succeed. if (EXPECT_FALSE(IS_TAGGED(item->next))) { TRACE("l3", "list_remove: %p is already marked for removal by another thread", item, 0); return DOES_NOT_EXIST; } node_t *next = SYNC_FETCH_AND_OR(&item->next, TAG); if (EXPECT_FALSE(IS_TAGGED(next))) { TRACE("l3", "list_remove: lost race -- %p is already marked for removal by another thread", item, 0); return DOES_NOT_EXIST; } uint64_t value = item->value; // Unlink from the list. TRACE("l3", "list_remove: link item's pred %p to it's successor %p", pred, next); node_t *other; if ((other = SYNC_CAS(&pred->next, item, next)) != item) { TRACE("l3", "list_remove: unlink failed; pred's link changed from %p to %p", item, other); // By marking the item earlier, we logically removed it. It is safe to leave the item. // Another thread will finish physically removing it from the list. return value; } // The thread that completes the unlink should free the memory. nbd_defer_free(item); return value; } void list_print (list_t *list) { node_t *item; item = list->head; while (item) { printf("0x%llx ", item->key); fflush(stdout); item = item->next; } printf("\n"); } #ifdef MAKE_list_test #include #include #include #include "runtime.h" #define NUM_ITERATIONS 10000000 static volatile int wait_; static long num_threads_; static list_t *list_; void *worker (void *arg) { int id = (int)(size_t)arg; unsigned int rand_seed = id+1;//rdtsc_l(); // Wait for all the worker threads to be ready. SYNC_ADD(&wait_, -1); do {} while (wait_); for (int i = 0; i < NUM_ITERATIONS/num_threads_; ++i) { int n = rand_r(&rand_seed); int key = (n & 0xF) + 1; if (n & (1 << 8)) { list_add(list_, key, 1); } else { list_remove(list_, key); } rcu_update(); } return NULL; } int main (int argc, char **argv) { nbd_init(); //lwt_set_trace_level("m0l0"); char* program_name = argv[0]; pthread_t thread[MAX_NUM_THREADS]; if (argc > 2) { fprintf(stderr, "Usage: %s num_threads\n", program_name); return -1; } num_threads_ = 2; if (argc == 2) { errno = 0; num_threads_ = strtol(argv[1], NULL, 10); if (errno) { fprintf(stderr, "%s: Invalid argument for number of threads\n", program_name); return -1; } if (num_threads_ <= 0) { fprintf(stderr, "%s: Number of threads must be at least 1\n", program_name); return -1; } if (num_threads_ > MAX_NUM_THREADS) { fprintf(stderr, "%s: Number of threads cannot be more than %d\n", program_name, MAX_NUM_THREADS); return -1; } } list_ = list_alloc(); struct timeval tv1, tv2; gettimeofday(&tv1, NULL); wait_ = num_threads_; for (int i = 0; i < num_threads_; ++i) { int rc = nbd_thread_create(thread + i, i, worker, (void*)(size_t)i); if (rc != 0) { perror("pthread_create"); return rc; } } for (int i = 0; i < num_threads_; ++i) { pthread_join(thread[i], NULL); } gettimeofday(&tv2, NULL); int ms = (int)(1000000*(tv2.tv_sec - tv1.tv_sec) + tv2.tv_usec - tv1.tv_usec) / 1000; printf("Th:%ld Time:%dms\n", num_threads_, ms); list_print(list_); lwt_dump("lwt.out"); return 0; } #endif//list_test