/* * Written by Josh Dybnis and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * Implementation of the lock-free skiplist data-structure created by Maurice Herlihy, Yossi Lev, * and Nir Shavit. See Herlihy's and Shivit's book "The Art of Multiprocessor Programming". * http://www.amazon.com/Art-Multiprocessor-Programming-Maurice-Herlihy/dp/0123705916/ * * See also Kir Fraser's dissertation "Practical Lock Freedom". * www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf * * This code is written for the x86 memory-model. The algorithim depends on certain stores and * loads being ordered. Be careful, this code probably won't work correctly on platforms with * weaker memory models if you don't add memory barriers in the right places. */ #include #include #include "common.h" #include "runtime.h" #include "struct.h" #include "mem.h" #include "tls.h" // Setting MAX_LEVEL to 0 essentially makes this data structure the Harris-Michael lock-free list // in list.c #define MAX_LEVEL 31 typedef struct node { uint64_t key; uint64_t value; int top_level; struct node *next[]; } node_t; typedef struct skiplist { node_t *head; } skiplist_t; static int random_level (void) { unsigned r = nbd_rand(); if (r&1) return 0; int n = __builtin_ctz(r)-1; #if MAX_LEVEL < 31 if (n > MAX_LEVEL) return MAX_LEVEL; #endif assert(n <= MAX_LEVEL); return n; } node_t *node_alloc (int level, uint64_t key, uint64_t value) { assert(level >= 0 && level <= MAX_LEVEL); size_t sz = sizeof(node_t) + (level + 1) * sizeof(node_t *); node_t *item = (node_t *)nbd_malloc(sz); memset(item, 0, sz); item->key = key; item->value = value; item->top_level = level; return item; } skiplist_t *sl_alloc (void) { skiplist_t *skiplist = (skiplist_t *)nbd_malloc(sizeof(skiplist_t)); skiplist->head = node_alloc(MAX_LEVEL, 0, 0); memset(skiplist->head->next, 0, (MAX_LEVEL+1) * sizeof(skiplist_t *)); return skiplist; } static node_t *find_preds (node_t *preds[MAX_LEVEL+1], int n, skiplist_t *skiplist, uint64_t key, int help_remove) { node_t *pred = skiplist->head; node_t *item = NULL; TRACE("s3", "find_preds: searching for key %p in skiplist (head is %p)", key, pred); // Optimization for small lists. No need to traverse empty higher levels. assert(MAX_LEVEL > 2); int start_level = 2; while (pred->next[start_level+1] != NULL) { start_level += start_level - 1; if (EXPECT_FALSE(start_level >= MAX_LEVEL)) { start_level = MAX_LEVEL; break; } } if (EXPECT_FALSE(start_level < n)) { start_level = n; } // Traverse the levels of the skiplist from the top level to the bottom for (int level = start_level; level >= 0; --level) { TRACE("s3", "find_preds: level %llu", level, 0); item = pred->next[level]; if (EXPECT_FALSE(IS_TAGGED(item))) { TRACE("s3", "find_preds: pred %p is marked for removal (item %p); retry", pred, item); return find_preds(preds, n, skiplist, key, help_remove); // retry } while (item != NULL) { node_t *next = item->next[level]; TRACE("s3", "find_preds: visiting item %p (next %p)", item, next); TRACE("s3", "find_preds: key %p", item->key, 0); // Marked items are logically removed, but not fully unlinked yet. while (EXPECT_FALSE(IS_TAGGED(next))) { // Skip over partially removed items. if (!help_remove) { item = (node_t *)STRIP_TAG(item->next); if (EXPECT_FALSE(item == NULL)) break; next = item->next[level]; continue; } // Unlink partially removed items. node_t *other; if ((other = SYNC_CAS(&pred->next[level], item, STRIP_TAG(next))) == item) { item = (node_t *)STRIP_TAG(next); if (EXPECT_FALSE(item == NULL)) break; next = item->next[level]; TRACE("s3", "find_preds: unlinked item %p from pred %p", item, pred); TRACE("s3", "find_preds: now item is %p next is %p", item, next); // The thread that completes the unlink should free the memory. if (level == 0) { nbd_defer_free(other); } } else { TRACE("s3", "find_preds: lost race to unlink from pred %p; its link changed to %p", pred, other); if (IS_TAGGED(other)) return find_preds(preds, n, skiplist, key, help_remove); // retry item = other; if (EXPECT_FALSE(item == NULL)) break; next = item->next[level]; } } if (EXPECT_FALSE(item == NULL)) break; // If we reached the key (or passed where it should be), we found a pred. Save it and continue down. if (item->key >= key) { TRACE("s3", "find_preds: found pred %p item %p", pred, item); break; } pred = item; item = next; } if (preds != NULL) { preds[level] = pred; } } if (n == -1 && item != NULL) { assert(preds != NULL); for (int level = start_level + 1; level <= item->top_level; ++level) { preds[level] = skiplist->head; } } return item; } // Fast find that does not help unlink partially removed nodes and does not return the node's predecessors. uint64_t sl_lookup (skiplist_t *skiplist, uint64_t key) { TRACE("s3", "sl_lookup: searching for key %p in skiplist %p", key, skiplist); node_t *item = find_preds(NULL, 0, skiplist, key, FALSE); // If we found an matching the return its value. return (item && item->key == key) ? item->value : DOES_NOT_EXIST; } // Insert the if it doesn't already exist in the uint64_t sl_add (skiplist_t *skiplist, uint64_t key, uint64_t value) { TRACE("s3", "sl_add: inserting key %p value %p", key, value); node_t *preds[MAX_LEVEL+1]; node_t *item = NULL; do { int n = random_level(); node_t *next = find_preds(preds, n, skiplist, key, TRUE); // If a node matching already exists in the skiplist, return its value. if (next != NULL && next->key == key) { TRACE("s3", "sl_add: there is already an item %p (value %p) with the same key", next, next->value); if (EXPECT_FALSE(item != NULL)) { nbd_free(item); } return next->value; } // First insert into the bottom level. if (EXPECT_TRUE(item == NULL)) { item = node_alloc(n, key, value); } TRACE("s3", "sl_add: attempting to insert item between %p and %p", preds[0], next); item->next[0] = next; for (int level = 1; level <= item->top_level; ++level) { node_t *pred = preds[level]; item->next[level] = pred->next[level]; } node_t *pred = preds[0]; node_t *other = SYNC_CAS(&pred->next[0], next, item); if (other == next) { TRACE("s3", "sl_add: successfully inserted item %p at level 0", item, 0); break; // success } TRACE("s3", "sl_add: failed to change pred's link: expected %p found %p", next, other); } while (1); // Insert into the skiplist from the bottom level up. for (int level = 1; level <= item->top_level; ++level) { do { node_t *pred; node_t *next; do { pred = preds[level]; next = pred->next[level]; if (next == NULL) // item goes at the end of the list break; if (!IS_TAGGED(next) && next->key > key) // pred's link changed break; find_preds(preds, item->top_level, skiplist, key, TRUE); } while (1); do { // There in no need to continue linking in the item if another thread removed it. node_t *old_next = ((volatile node_t *)item)->next[level]; if (IS_TAGGED(old_next)) return DOES_NOT_EXIST; // success // Use a CAS so we to not inadvertantly remove a mark another thread placed on the item. if (next == old_next || SYNC_CAS(&item->next[level], old_next, next) == old_next) break; } while (1); TRACE("s3", "sl_add: attempting to insert item between %p and %p", pred, next); node_t *other = SYNC_CAS(&pred->next[level], next, item); if (other == next) { TRACE("s3", "sl_add: successfully inserted item %p at level %llu", item, level); break; // success } TRACE("s3", "sl_add: failed to change pred's link: expected %p found %p", next, other); } while (1); } return value; } uint64_t sl_remove (skiplist_t *skiplist, uint64_t key) { TRACE("s3", "sl_remove: removing item with key %p from skiplist %p", key, skiplist); node_t *preds[MAX_LEVEL+1]; node_t *item = find_preds(preds, -1, skiplist, key, TRUE); if (item == NULL || item->key != key) { TRACE("s3", "sl_remove: remove failed, an item with a matching key does not exist in the skiplist", 0, 0); return DOES_NOT_EXIST; } // Mark removed at each level of the skiplist from the top down. This must be atomic. If multiple threads // try to remove the same item only one of them should succeed. Marking the bottom level establishes which of // them succeeds. for (int level = item->top_level; level >= 0; --level) { if (EXPECT_FALSE(IS_TAGGED(item->next[level]))) { TRACE("s3", "sl_remove: %p is already marked for removal by another thread", item, 0); if (level == 0) return DOES_NOT_EXIST; continue; } node_t *next = SYNC_FETCH_AND_OR(&item->next[level], TAG); if (EXPECT_FALSE(IS_TAGGED(next))) { TRACE("s3", "sl_remove: lost race -- %p is already marked for removal by another thread", item, 0); if (level == 0) return DOES_NOT_EXIST; continue; } } uint64_t value = item->value; // Unlink from the top down. int level = item->top_level; while (level >= 0) { node_t *pred = preds[level]; node_t *next = item->next[level]; TRACE("s3", "sl_remove: link item's pred %p to it's successor %p", pred, STRIP_TAG(next)); node_t *other = NULL; if ((other = SYNC_CAS(&pred->next[level], item, STRIP_TAG(next))) != item) { TRACE("s3", "sl_remove: unlink failed; pred's link changed from %p to %p", item, other); // By marking the item earlier, we logically removed it. It is safe to leave the item partially // unlinked. Another thread will finish physically removing it from the skiplist. return value; } --level; } // The thread that completes the unlink should free the memory. nbd_defer_free(item); return value; } void sl_print (skiplist_t *skiplist) { for (int level = MAX_LEVEL; level >= 0; --level) { node_t *item = skiplist->head; if (item->next[level] == NULL) continue; printf("(%d) ", level); while (item) { node_t *next = item->next[level]; printf("%s%p ", IS_TAGGED(next) ? "*" : "", item); item = (node_t *)STRIP_TAG(next); } printf("\n"); fflush(stdout); } printf("\n"); node_t *item = skiplist->head; while (item) { int is_marked = IS_TAGGED(item->next[0]); printf("%s%p:0x%llx [%d]", is_marked ? "*" : "", item, item->key, item->top_level); for (int level = 1; level <= item->top_level; ++level) { node_t *next = (node_t *)STRIP_TAG(item->next[level]); is_marked = IS_TAGGED(item->next[0]); printf(" %p%s", next, is_marked ? "*" : ""); if (item == skiplist->head && item->next[level] == NULL) break; } printf("\n"); fflush(stdout); item = (node_t *)STRIP_TAG(item->next[0]); } } #ifdef MAKE_skiplist_test #include #include #include #include "runtime.h" #define NUM_ITERATIONS 10000000 static volatile int wait_; static long num_threads_; static skiplist_t *sl_; void *worker (void *arg) { // Wait for all the worker threads to be ready. SYNC_ADD(&wait_, -1); do {} while (wait_); for (int i = 0; i < NUM_ITERATIONS/num_threads_; ++i) { unsigned r = nbd_rand(); int key = (r & 0xF) + 1; if (r & (1 << 8)) { sl_add(sl_, key, 1); } else { sl_remove(sl_, key); } rcu_update(); } return NULL; } int main (int argc, char **argv) { nbd_init(); lwt_set_trace_level("s3"); char* program_name = argv[0]; pthread_t thread[MAX_NUM_THREADS]; if (argc > 2) { fprintf(stderr, "Usage: %s num_threads\n", program_name); return -1; } num_threads_ = 2; if (argc == 2) { errno = 0; num_threads_ = strtol(argv[1], NULL, 10); if (errno) { fprintf(stderr, "%s: Invalid argument for number of threads\n", program_name); return -1; } if (num_threads_ <= 0) { fprintf(stderr, "%s: Number of threads must be at least 1\n", program_name); return -1; } if (num_threads_ > MAX_NUM_THREADS) { fprintf(stderr, "%s: Number of threads cannot be more than %d\n", program_name, MAX_NUM_THREADS); return -1; } } sl_ = sl_alloc(); struct timeval tv1, tv2; gettimeofday(&tv1, NULL); wait_ = num_threads_; for (int i = 0; i < num_threads_; ++i) { int rc = nbd_thread_create(thread + i, i, worker, (void*)(size_t)i); if (rc != 0) { perror("pthread_create"); return rc; } } for (int i = 0; i < num_threads_; ++i) { pthread_join(thread[i], NULL); } gettimeofday(&tv2, NULL); int ms = (int)(1000000*(tv2.tv_sec - tv1.tv_sec) + tv2.tv_usec - tv1.tv_usec) / 1000; sl_print(sl_); printf("Th:%ld Time:%dms\n", num_threads_, ms); return 0; } #endif//skiplist_test