#include static double dot3d(int g[], double x, double y, double z) { return g[0] * x + g[1] * y + g[2] * z; } static double dot2d(int g[], double x, double y) { return g[0] * x + g[1] * y; } static double dot4d(int g[], double x, double y, double z, double w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; } static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); } static double mix(double a, double b, double t) { return (1 - t) * a + t * b; } static int grad3[][3] = { {1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0}, {1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1}, {0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1} }; static int grad4[][4] = {{0, 1, 1, 1}, {0, 1, 1, -1}, {0, 1, -1, 1}, {0, 1, -1, -1}, {0, -1, 1, 1}, {0, -1, 1, -1}, {0, -1, -1, 1}, {0, -1, -1, -1}, {1, 0, 1, 1}, {1, 0, 1, -1}, {1, 0, -1, 1}, {1, 0, -1, -1}, {-1, 0, 1, 1}, {-1, 0, 1, -1}, {-1, 0, -1, 1}, {-1, 0, -1, -1}, {1, 1, 0, 1}, {1, 1, 0, -1}, {1, -1, 0, 1}, {1, -1, 0, -1}, {-1, 1, 0, 1}, {-1, 1, 0, -1}, {-1, -1, 0, 1}, {-1, -1, 0, -1}, {1, 1, 1, 0}, {1, 1, -1, 0}, {1, -1, 1, 0}, {1, -1, -1, 0}, {-1, 1, 1, 0}, {-1, 1, -1, 0}, {-1, -1, 1, 0}, {-1, -1, -1, 0} }; /* Classic Perlin noise in 3D, for comparison */ static int perm[] = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180, /* * To remove the need for index wrapping, double the permutation * table length */ 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }; /* Classic Perlin noise, 3D version */ static double noise3dp(double x, double y, double z) { /* Find unit grid cell containing point */ int X = floor(x); int Y = floor(y); int Z = floor(z); /* Get relative xyz coordinates of point within that cell */ x = x - X; y = y - Y; z = z - Z; /* * Wrap the integer cells at 255 (smaller integer period can be * introduced here) */ X = X & 255; Y = Y & 255; Z = Z & 255; /* Calculate a set of eight hashed gradient indices */ int gi000 = perm[X + perm[Y + perm[Z]]] % 12; int gi001 = perm[X + perm[Y + perm[Z + 1]]] % 12; int gi010 = perm[X + perm[Y + 1 + perm[Z]]] % 12; int gi011 = perm[X + perm[Y + 1 + perm[Z + 1]]] % 12; int gi100 = perm[X + 1 + perm[Y + perm[Z]]] % 12; int gi101 = perm[X + 1 + perm[Y + perm[Z + 1]]] % 12; int gi110 = perm[X + 1 + perm[Y + 1 + perm[Z]]] % 12; int gi111 = perm[X + 1 + perm[Y + 1 + perm[Z + 1]]] % 12; /* * The gradients of each corner are now: * g000 = grad3[gi000]; * g001 = grad3[gi001]; * g010 = grad3[gi010]; * g011 = grad3[gi011]; * g100 = grad3[gi100]; * g101 = grad3[gi101]; * g110 = grad3[gi110]; * g111 = grad3[gi111]; */ /* Calculate noise contributions from each of the eight corners */ double n000 = dot3d(grad3[gi000], x, y, z); double n100 = dot3d(grad3[gi100], x - 1, y, z); double n010 = dot3d(grad3[gi010], x, y - 1, z); double n110 = dot3d(grad3[gi110], x - 1, y - 1, z); double n001 = dot3d(grad3[gi001], x, y, z - 1); double n101 = dot3d(grad3[gi101], x - 1, y, z - 1); double n011 = dot3d(grad3[gi011], x, y - 1, z - 1); double n111 = dot3d(grad3[gi111], x - 1, y - 1, z - 1); /* Compute the fade curve value for each of x, y, z */ double u = fade(x); double v = fade(y); double w = fade(z); /* Interpolate along x the contributions from each of the corners */ double nx00 = mix(n000, n100, u); double nx01 = mix(n001, n101, u); double nx10 = mix(n010, n110, u); double nx11 = mix(n011, n111, u); /* Interpolate the four results along y */ double nxy0 = mix(nx00, nx10, v); double nxy1 = mix(nx01, nx11, v); /* Interpolate the two last results along z */ double nxyz = mix(nxy0, nxy1, w); return nxyz; } /* * A lookup table to traverse the simplex around a given point in 4D. * Details can be found where this table is used, in the 4D noise method. */ int simplex[][4] = { {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0}, {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0}, {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}}; double grad1(int hash) { double g; int h = hash & 15; g = 1.0 + (h & 7); /* Gradient value is one of 1.0, 2.0, ..., 8.0 */ if (h&8) g = -g; /* Make half of the gradients negative */ return g; } double noise1d(double x, double *dx) { int i0 = floor(x); int i1 = i0 + 1; double x0 = x - i0; double x1 = x0 - 1.0; double gx0, gx1; double n0, n1; double t20, t40, t21, t41; double x20 = x0*x0; double t0 = 1.0 - x20; /* if(t0 < 0.0f) t0 = 0.0f; /* Never happens for 1D: x0<=1 always */ t20 = t0 * t0; t40 = t20 * t20; gx0 = grad1(perm[i0 & 0xff]); n0 = t40 * gx0 * x0; double x21 = x1*x1; double t1 = 1.0 - x21; /* if(t1 < 0.0f) t1 = 0.0f; /* Never happens for 1D: |x1|<=1 always */ t21 = t1 * t1; t41 = t21 * t21; gx1 = grad1(perm[i1 & 0xff]); n1 = t41 * gx1 * x1; /* * Compute derivative according to: * *dnoise_dx = -8.0f * t20 * t0 * x0 * (gx0 * x0) + t40 * gx0; * *dnoise_dx += -8.0f * t21 * t1 * x1 * (gx1 * x1) + t41 * gx1; */ if (dx) { *dx = t20 * t0 * gx0 * x20; *dx += t21 * t1 * gx1 * x21; *dx *= -8.0; *dx += t40 * gx0 + t41 * gx1; *dx *= 0.25; /* Scale derivative to match the noise scaling */ } /* * The maximum value of this noise is 8*(3/4)^4 = 2.53125 * A factor of 0.395 would scale to fit exactly within [-1,1], but * to better match classic Perlin noise, we scale it down some more. * scale = 1.0 / 2.53125 */ return (n0 + n1)/2.53125; } /* 2D simplex noise */ static double noise2d(double xin, double yin) { double n0, n1, n2; /* Noise contributions from the three * corners */ /* Skew the input space to determine which simplex cell we're in */ double F2 = 0.5 * (sqrt(3.0) - 1.0); double s = (xin + yin) * F2; /* Hairy factor for 2D */ int i = floor(xin + s); int j = floor(yin + s); double G2 = (3.0 - sqrt(3.0)) / 6.0; double t = (i + j) * G2; double X0 = i - t; /* Unskew the cell origin back to * (x,y) space */ double Y0 = j - t; double x0 = xin - X0; /* The x,y distances from the cell * origin */ double y0 = yin - Y0; /* For the 2D case, the simplex shape is an equilateral triangle. */ /* Determine which simplex we are in. */ int i1, j1; /* Offsets for second (middle) corner of * simplex in (i,j) coords */ if (x0 > y0) { /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ i1 = 1; j1 = 0; } else { /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ i1 = 0; j1 = 1; } /* * A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and * a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where * c = (3-sqrt(3))/6 */ double x1 = x0 - i1 + G2; /* Offsets for middle corner * in (x,y) unskewed coords */ double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; /* Offsets for last * corner in (x,y) * unskewed coords */ double y2 = y0 - 1.0 + 2.0 * G2; /* Work out the hashed gradient indices of the three simplex corners */ int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1]] % 12; int gi2 = perm[ii + 1 + perm[jj + 1]] % 12; /* Calculate the contribution from the three corners */ double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot2d(grad3[gi0], x0, y0); /* (x,y) of grad3 used * for 2D gradient */ } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot2d(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot2d(grad3[gi2], x2, y2); } /* * Add contributions from each corner to get the final noise value. * The result is scaled to return values in the interval [-1,1]. */ return 70.0 * (n0 + n1 + n2); } /* 3D simplex noise */ static double noise3d(double xin, double yin, double zin) { double n0, n1, n2, n3; /* Noise contributions from the four * corners */ /* Skew the input space to determine which simplex cell we're in */ double F3 = 1.0 / 3.0; double s = (xin + yin + zin) * F3; /* Very nice and simple * skew factor for 3D */ int i = floor(xin + s); int j = floor(yin + s); int k = floor(zin + s); double G3 = 1.0 / 6.0; /* Very nice and simple unskew * factor, too */ double t = (i + j + k) * G3; double X0 = i - t; /* Unskew the cell origin back to * (x,y,z) space */ double Y0 = j - t; double Z0 = k - t; double x0 = xin - X0; /* The x,y,z distances from the cell * origin */ double y0 = yin - Y0; double z0 = zin - Z0; /* * For the 3D case, the simplex shape is a slightly irregular * tetrahedron. */ /* Determine which simplex we are in. */ int i1, j1, k1; /* Offsets for second corner of * simplex in (i,j,k) coords */ int i2, j2, k2; /* Offsets for third corner of * simplex in (i,j,k) coords */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } /* X Y Z order */ else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } /* X Z Y order */ else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } /* Z X Y order */ } else { /* x0 y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; /* The integer offsets for the second * simplex corner */ int i2, j2, k2, l2; /* The integer offsets for the third * simplex corner */ int i3, j3, k3, l3; /* The integer offsets for the fourth * simplex corner */ /* * simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some * order. */ /* * Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; /* * The number 2 in the "simplex" array is at the second largest * coordinate. */ i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; /* * The number 1 in the "simplex" array is at the second smallest * coordinate. */ i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; /* * The fifth corner has all coordinate offsets = 1, so no need to * look that up. */ double x1 = x0 - i1 + G4; /* Offsets for second corner * in (x,y,z,w) coords */ double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0 * G4; /* Offsets for third * corner in (x,y,z,w) * coords */ double y2 = y0 - j2 + 2.0 * G4; double z2 = z0 - k2 + 2.0 * G4; double w2 = w0 - l2 + 2.0 * G4; double x3 = x0 - i3 + 3.0 * G4; /* Offsets for fourth * corner in (x,y,z,w) * coords */ double y3 = y0 - j3 + 3.0 * G4; double z3 = z0 - k3 + 3.0 * G4; double w3 = w0 - l3 + 3.0 * G4; double x4 = x0 - 1.0 + 4.0 * G4; /* Offsets for last * corner in (x,y,z,w) * coords */ double y4 = y0 - 1.0 + 4.0 * G4; double z4 = z0 - 1.0 + 4.0 * G4; double w4 = w0 - 1.0 + 4.0 * G4; /* Work out the hashed gradient indices of the five simplex corners */ int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; /* Calculate the contribution from the five corners */ double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot4d(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot4d(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot4d(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot4d(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0.0; } else { t4 *= t4; n4 = t4 * t4 * dot4d(grad4[gi4], x4, y4, z4, w4); } /* Sum up and scale the result to cover the range [-1,1] */ return 27.0 * (n0 + n1 + n2 + n3 + n4); } double noise_simplex(int dim, double scale, double *pt) { switch (dim) { case 1: return noise1d(pt[0]*scale,0); break; case 2: return noise2d(pt[0]*scale,pt[1]*scale); break; case 3: return noise3d(pt[0]*scale,pt[1]*scale,pt[2]*scale); break; case 4: return noise4d(pt[0]*scale,pt[1]*scale,pt[2]*scale,pt[3]*scale); break; default: break; } return 0.0; } double noise_fractal(int dim, double *pt, int octaves, double lacunarity, double persistence) { double noise,scale,lac; noise = 0.0; scale = 1.0; lac = 1.0; for (scale=1.0; octaves--;scale*=persistence) { noise += noise_simplex(dim, lac, pt) * scale; scale *= persistence; lac *= lacunarity; } return noise; } #ifdef MAIN #include #include #include int main(int argc, char *argv[]) { double r; double base; double s[2]; int x,y; int octaves; int pos = 0, neg = 0; double max, min; #ifdef INFINITY max = -INFINITY; min = +INFINITY; #else max = DBL_MIN; min = DBL_MAX; #endif octaves = argc > 1 ? atoi(argv[1]) : 1; base = 40.0; for (x=0;x<256;x++) { s[0] = x/base; for (y=0;y<256;y++) { s[1] = y/base; r = noise_fractal(2, s, octaves, 2.0, 0.7); r /= 1.5; /* grain */ r = noise_simplex(2,0.20,s)*10; r = (r - (int)r); /* fine */ r += noise_simplex(2, 75.0, s) * 0.20; #if 1 /* streak */ r += noise2d(s[0]*0.45, s[1]*200.0) * 0.3; #endif r /= 2.5; printf("%f\n", r); if (r > 1.0) { pos++; } else if (r < -1.0) { neg++; } if (r > max) max = r; if (r < min) min = r; } } fprintf(stderr, "max value: %f\n", max); fprintf(stderr, "min value: %f\n", min); if (pos) fprintf(stderr, "%d values > +1.0\n", pos); if (neg) fprintf(stderr, "%d values < -1.0\n", neg); return 0; switch (--argc) { case 1: r = noise1d(atof(argv[1]),0); break; case 2: r = noise2d(atof(argv[1]), atof(argv[2])); break; case 3: r = noise3d(atof(argv[1]), atof(argv[2]), atof(argv[3])); break; case 4: r = noise4d(atof(argv[1]), atof(argv[2]), atof(argv[3]), atof(argv[4])); break; default: fprintf(stderr, "Wrong number of arguments: %d, must be 2, 3, or 4\n", argc); exit(EXIT_FAILURE); break; }; printf("%f\n", r); return 0; } #endif