/* * pred.c -- source for predicate detection, manipulation * * $Id: pred.c,v 1.6 95/09/26 12:58:44 parrt Exp $ * $Revision: 1.6 $ * * SOFTWARE RIGHTS * * We reserve no LEGAL rights to the Purdue Compiler Construction Tool * Set (PCCTS) -- PCCTS is in the public domain. An individual or * company may do whatever they wish with source code distributed with * PCCTS or the code generated by PCCTS, including the incorporation of * PCCTS, or its output, into commerical software. * * We encourage users to develop software with PCCTS. However, we do ask * that credit is given to us for developing PCCTS. By "credit", * we mean that if you incorporate our source code into one of your * programs (commercial product, research project, or otherwise) that you * acknowledge this fact somewhere in the documentation, research report, * etc... If you like PCCTS and have developed a nice tool with the * output, please mention that you developed it using PCCTS. In * addition, we ask that this header remain intact in our source code. * As long as these guidelines are kept, we expect to continue enhancing * this system and expect to make other tools available as they are * completed. * * ANTLR 1.33 * Terence Parr * Parr Research Corporation * with Purdue University and AHPCRC, University of Minnesota * 1989-1995 */ #include #ifdef __cplusplus #ifndef __STDC__ #define __STDC__ #endif #endif #include "set.h" #include "syn.h" #include "hash.h" #include "generic.h" #include "dlgdef.h" #include #ifdef __STDC__ static void complete_context_sets(RuleRefNode *, Predicate *); static void complete_context_trees(RuleRefNode *, Predicate *); #else static void complete_context_sets(); static void complete_context_trees(); #endif static Predicate pred_empty = { NULL,NULL,NULL,NULL,NULL,NULL,0, {set_init,set_init},set_init }; char *PRED_AND_LIST = "AND"; char *PRED_OR_LIST = "OR"; /* * In C mode, return the largest constant integer found as the * sole argument to LATEXT(i). * * In C++ mode, return the largest constant integer found as the * sole argument to LT(i) given that the char before is nonalpha. */ static int #ifdef __STDC__ predicateLookaheadDepth(ActionNode *a) #else predicateLookaheadDepth(a) ActionNode *a; #endif { int max_k=0; if ( GenCC ) { /* scan for LT(i) */ int k = 0; char *p = a->action; while ( p!=NULL ) { p = strstr(p, "LT("); if ( p!=NULL ) { if ( p>=a->action && !isalpha(*(p-1)) ) { k = atoi(p+strlen("LT(")); if ( k>max_k ) max_k=k; } p += strlen("LT("); } } } else { /* scan for LATEXT(i) */ int k = 0; char *p = a->action; while ( p!=NULL ) { p = strstr(p, "LATEXT("); if ( p!=NULL ) { p += strlen("LATEXT("); k = atoi(p); if ( k>max_k ) max_k=k; } } } if ( max_k==0 ) { if ( !a->frmwarned ) { a->frmwarned = 1; warnFL(eMsg1("predicate: %s missing, bad, or with i=0; assuming i=1", GenCC?"LT(i)":"LATEXT(i)"), FileStr[a->file], a->line); } max_k = 1; } return max_k; } /* Find all predicates in a block of alternatives. DO NOT find predicates * behind the block because that predicate could depend on things set in * one of the nonoptional blocks */ Predicate * #ifdef __STDC__ find_in_aSubBlk( Junction *alt ) #else find_in_aSubBlk( alt ) Junction *alt; #endif { Predicate *a, *head=NULL, *tail, *root=NULL; Junction *p = alt; for (; p!=NULL; p=(Junction *)p->p2) { /* ignore empty alts */ if ( p->p1->ntype != nJunction || ((Junction *)p->p1)->jtype != EndBlk ) { a = find_predicates(p->p1); /* get preds for this alt */ if ( a==NULL ) continue; /* make an OR list of predicates */ if ( head==NULL ) { root = new_pred(); root->expr = PRED_OR_LIST; head = tail = a; root->down = head; } else { tail->right = a; a->left = tail; a->up = tail->up; tail = a; } } } /* if just one pred, remove OR root */ if ( root!=NULL && root->down->right == NULL ) { Predicate *d = root->down; free(root); return d; } return root; } Predicate * #ifdef __STDC__ find_in_aOptBlk( Junction *alt ) #else find_in_aOptBlk( alt ) Junction *alt; #endif { return find_in_aSubBlk( alt ); } Predicate * #ifdef __STDC__ find_in_aLoopBegin( Junction *alt ) #else find_in_aLoopBegin( alt ) Junction *alt; #endif { return find_in_aSubBlk( (Junction *) alt->p1 ); /* get preds in alts */ } Predicate * #ifdef __STDC__ find_in_aPlusBlk( Junction *alt ) #else find_in_aPlusBlk( alt ) Junction *alt; #endif { require(alt!=NULL&&alt->p2!=NULL, "invalid aPlusBlk"); return find_in_aSubBlk( alt ); } /* Look for a predicate; * * Do not pass anything but Junction nodes; no Actions, Tokens, RuleRefs. * This means that a "hoisting distance" of zero is the only distance * allowable. Init actions are ignored. * * WARNING: * Assumes no (..)? block after predicate for the moment. * Does not check to see if pred is in production that can generate * a sequence contained in the set of ambiguous tuples. * * Return the predicate found if any. */ Predicate * #ifdef __STDC__ find_predicates( Node *alt ) #else find_predicates( alt ) Node *alt; #endif { #ifdef DBG_PRED Junction *j; RuleRefNode *r; TokNode *t; #endif Predicate *pred; if ( alt==NULL ) return NULL; #ifdef DBG_PRED switch ( alt->ntype ) { case nJunction : j = (Junction *) alt; fprintf(stderr, "Junction(in %s)", j->rname); switch ( j->jtype ) { case aSubBlk : fprintf(stderr,"aSubBlk\n"); break; case aOptBlk : fprintf(stderr,"aOptBlk\n"); break; case aLoopBegin : fprintf(stderr,"aLoopBeginBlk\n"); break; case aLoopBlk : fprintf(stderr,"aLoopBlk\n"); break; case aPlusBlk : fprintf(stderr,"aPlusBlk\n"); break; case EndBlk : fprintf(stderr,"EndBlk\n"); break; case RuleBlk : fprintf(stderr,"RuleBlk\n"); break; case Generic : fprintf(stderr,"Generic\n"); break; case EndRule : fprintf(stderr,"EndRule\n"); break; } break; case nRuleRef : r = (RuleRefNode *) alt; fprintf(stderr, "RuleRef(in %s)\n", r->rname); break; case nToken : t = (TokNode *) alt; fprintf(stderr, "TokenNode(in %s)%s\n", t->rname, TokenString(t->token)); break; case nAction : fprintf(stderr, "Action\n"); break; } #endif switch ( alt->ntype ) { case nJunction : { Predicate *a, *b; Junction *p = (Junction *) alt; /* lock nodes */ if ( p->jtype==aLoopBlk || p->jtype==RuleBlk || p->jtype==aPlusBlk || p->jtype==EndRule ) { require(p->pred_lock!=NULL, "rJunc: lock array is NULL"); if ( p->pred_lock[1] ) { return NULL; } p->pred_lock[1] = TRUE; } switch ( p->jtype ) { case aSubBlk : a = find_in_aSubBlk(p); return a; /* nothing is visible past this guy */ case aOptBlk : a = find_in_aOptBlk(p); return a; case aLoopBegin : a = find_in_aLoopBegin(p); return a; case aLoopBlk : a = find_in_aSubBlk(p); p->pred_lock[1] = FALSE; return a; case aPlusBlk : a = find_in_aPlusBlk(p); p->pred_lock[1] = FALSE; return a; /* nothing is visible past this guy */ case RuleBlk : a = find_predicates(p->p1); p->pred_lock[1] = FALSE; return a; case Generic : a = find_predicates(p->p1); b = find_predicates(p->p2); if ( p->pred_lock!=NULL ) p->pred_lock[1] = FALSE; if ( a==NULL ) return b; if ( b==NULL ) return a; /* otherwise OR the two preds together */ { fatal_internal("hit unknown situation during predicate hoisting"); } case EndBlk : case EndRule : /* Find no predicates after a rule ref */ return NULL; default: fatal_internal("this cannot be printed\n"); break; } } case nAction : { ActionNode *p = (ActionNode *) alt; if ( p->init_action ) return find_predicates(p->next); if ( p->is_predicate ) { Tree *t; #ifdef DBG_PRED fprintf(stderr, "predicate: <<%s>>?\n", p->action); #endif if ( p->guardpred!=NULL ) { pred = p->guardpred; } else { pred = new_pred(); pred->k = predicateLookaheadDepth(p); pred->source = p; pred->expr = p->action; if ( HoistPredicateContext && pred->k > 1 ) { if ( first_item_is_guess_block((Junction *)p->next) ) { warnFL("cannot compute context of predicate in front of (..)? block", FileStr[p->file], p->line); } else { ConstrainSearch = 0; TRAV(p->next, pred->k, &(pred->completion), t); pred->tcontext = t; #ifdef DBG_PRED fprintf(stderr, "LL(%d) context:", pred->k); preorder(t); fprintf(stderr, "\n"); #endif } } else if ( HoistPredicateContext && pred->k == 1 ) { pred->scontext[1] = empty; if ( first_item_is_guess_block((Junction *)p->next) ) { warnFL("cannot compute context of predicate in front of (..)? block", FileStr[p->file], p->line); } else { REACH((Junction *)p->next, 1, &(pred->completion), pred->scontext[1]); #ifdef DBG_PRED fprintf(stderr, "LL(1) context:"); s_fprT(stderr, pred->scontext[1]); fprintf(stderr, "\n"); #endif } } } { Predicate *d = find_predicates(p->next), *root; /* Warning: Doesn't seem like the up pointers will all be set correctly; * TJP: that's ok, we're not using them now. */ if ( d!=NULL ) { root = new_pred(); root->expr = PRED_AND_LIST; root->down = pred; pred->right = d; pred->up = root; d->left = pred; d->up = pred->up; return root; } } return pred; } return NULL; } case nRuleRef : { Predicate *a; RuleRefNode *p = (RuleRefNode *) alt; Junction *r; int save_halt; RuleEntry *q = (RuleEntry *) hash_get(Rname, p->text); if ( q == NULL ) { warnFL( eMsg1("rule %s not defined",p->text), FileStr[p->file], p->line ); return NULL; } r = RulePtr[q->rulenum]; if ( r->pred_lock[1] ) { /* infinite left-recursion; ignore 'cause LL sup 1 (k) analysis * must have seen it earlier. */ return NULL; } save_halt = r->end->halt; r->end->halt = TRUE; /* a = find_predicates((Node *)r->p1);*/ a = find_predicates((Node *)r); r->end->halt = save_halt; if ( a==NULL ) return NULL; /* attempt to compute the "local" FOLLOW just like in normal lookahead * computation if needed */ complete_context_sets(p,a); complete_context_trees(p,a); return a; } case nToken : break; } return NULL; } Predicate * #ifdef __STDC__ new_pred( void ) #else new_pred( ) #endif { Predicate *p = (Predicate *) malloc(sizeof(Predicate)); require(p!=NULL, "new_pred: cannot alloc predicate"); *p = pred_empty; return p; } static void #ifdef __STDC__ complete_context_sets( RuleRefNode *p, Predicate *a ) #else complete_context_sets( p, a ) RuleRefNode *p; Predicate *a; #endif { set rk2, b; int k2; #ifdef DBG_PRED fprintf(stderr, "enter complete_context_sets\n"); #endif for (; a!=NULL; a=a->right) { if ( a->expr == PRED_AND_LIST || a->expr == PRED_OR_LIST ) { complete_context_sets(p, a->down); continue; } rk2 = b = empty; while ( !set_nil(a->completion) ) { k2 = set_int(a->completion); set_rm(k2, a->completion); REACH(p->next, k2, &rk2, b); set_orin(&(a->scontext[1]), b); set_free(b); } set_orin(&(a->completion), rk2);/* remember what we couldn't do */ set_free(rk2); #ifdef DBG_PRED fprintf(stderr, "LL(1) context for %s(addr 0x%x) after ruleref:", a->expr, a); s_fprT(stderr, a->scontext[1]); fprintf(stderr, "\n"); #endif /* complete_context_sets(p, a->down);*/ } #ifdef DBG_PRED fprintf(stderr, "exit complete_context_sets\n"); #endif } static void #ifdef __STDC__ complete_context_trees( RuleRefNode *p, Predicate *a ) #else complete_context_trees( p, a ) RuleRefNode *p; Predicate *a; #endif { set rk2; int k2; Tree *u; #ifdef DBG_PRED fprintf(stderr, "enter complete_context_trees\n"); #endif for (; a!=NULL; a=a->right) { if ( a->expr == PRED_AND_LIST || a->expr == PRED_OR_LIST ) { complete_context_trees(p, a->down); continue; } rk2 = empty; /* any k left to do? if so, link onto tree */ while ( !set_nil(a->completion) ) { k2 = set_int(a->completion); set_rm(k2, a->completion); u = NULL; TRAV(p->next, k2, &rk2, u); /* any subtrees missing k2 tokens, add u onto end */ a->tcontext = tlink(a->tcontext, u, k2); } set_orin(&(a->completion), rk2);/* remember what we couldn't do */ set_free(rk2); #ifdef DBG_PRED fprintf(stderr, "LL(i<%d) context after ruleref:", LL_k); preorder(a->tcontext); fprintf(stderr, "\n"); #endif /* complete_context_trees(p, a->down);*/ } #ifdef DBG_PRED fprintf(stderr, "exit complete_context_trees\n"); #endif } /* Walk a list of predicates and return the set of all tokens in scontext[1]'s */ set #ifdef __STDC__ covered_set( Predicate *p ) #else covered_set( p ) Predicate *p; #endif { set a; a = empty; for (; p!=NULL; p=p->right) { if ( p->expr == PRED_AND_LIST || p->expr == PRED_OR_LIST ) { set_orin(&a, covered_set(p->down)); continue; } set_orin(&a, p->scontext[1]); set_orin(&a, covered_set(p->down)); } return a; }