/* * public domain blake2 implementation adapted from the reference * implementation by Samuel Neves * More information about the BLAKE2 hash function can be found at * https://blake2.net. */ #include #include #include #include "blake2.h" static uint64_t load64(const void *src) { #if defined(NATIVE_LITTLE_ENDIAN) uint64_t w; memcpy(&w, src, sizeof w); return w; #else const uint8_t *p = (const uint8_t *) src; return ((uint64_t) (p[0]) << 0) | ((uint64_t) (p[1]) << 8) | ((uint64_t) (p[2]) << 16) | ((uint64_t) (p[3]) << 24) | ((uint64_t) (p[4]) << 32) | ((uint64_t) (p[5]) << 40) | ((uint64_t) (p[6]) << 48) | ((uint64_t) (p[7]) << 56); #endif } static void store32(void *dst, uint32_t w) { #if defined(NATIVE_LITTLE_ENDIAN) memcpy(dst, &w, sizeof w); #else uint8_t *p = (uint8_t *) dst; p[0] = (uint8_t) (w >> 0); p[1] = (uint8_t) (w >> 8); p[2] = (uint8_t) (w >> 16); p[3] = (uint8_t) (w >> 24); #endif } static void store64(void *dst, uint64_t w) { #if defined(NATIVE_LITTLE_ENDIAN) memcpy(dst, &w, sizeof w); #else uint8_t *p = (uint8_t *) dst; p[0] = (uint8_t) (w >> 0); p[1] = (uint8_t) (w >> 8); p[2] = (uint8_t) (w >> 16); p[3] = (uint8_t) (w >> 24); p[4] = (uint8_t) (w >> 32); p[5] = (uint8_t) (w >> 40); p[6] = (uint8_t) (w >> 48); p[7] = (uint8_t) (w >> 56); #endif } static uint64_t rotr64(const uint64_t w, const unsigned c) { return (w >> c) | (w << (64 - c)); } /* prevents compiler optimizing out memset() */ static void secure_zero_memory(void *v, size_t n) { static void *(*const volatile memset_v)(void *, int, size_t) = &memset; memset_v(v, 0, n); } static const uint64_t blake2b_IV[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; static const uint8_t blake2b_sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; static void blake2b_set_lastnode(blake2b_state * S) { S->f[1] = (uint64_t) - 1; } /* Some helper functions, not necessarily useful */ static int blake2b_is_lastblock(const blake2b_state * S) { return S->f[0] != 0; } static void blake2b_set_lastblock(blake2b_state * S) { if (S->last_node) blake2b_set_lastnode(S); S->f[0] = (uint64_t) - 1; } static void blake2b_increment_counter(blake2b_state * S, const uint64_t inc) { S->t[0] += inc; S->t[1] += (S->t[0] < inc); } static void blake2b_init0(blake2b_state * S) { size_t i; memset(S, 0, sizeof(blake2b_state)); for (i = 0; i < 8; ++i) S->h[i] = blake2b_IV[i]; } /* init xors IV with input parameter block */ int blake2b_init_param(blake2b_state * S, const blake2b_param * P) { const uint8_t *p = (const uint8_t *) (P); size_t i; blake2b_init0(S); /* IV XOR ParamBlock */ for (i = 0; i < 8; ++i) S->h[i] ^= load64(p + sizeof(S->h[i]) * i); S->outlen = P->digest_length; return 0; } int blake2b_init(blake2b_state * S, size_t outlen) { blake2b_param P[1]; if ((!outlen) || (outlen > BLAKE2B_OUTBYTES)) return -1; P->digest_length = (uint8_t) outlen; P->key_length = 0; P->fanout = 1; P->depth = 1; store32(&P->leaf_length, 0); store32(&P->node_offset, 0); store32(&P->xof_length, 0); P->node_depth = 0; P->inner_length = 0; memset(P->reserved, 0, sizeof(P->reserved)); memset(P->salt, 0, sizeof(P->salt)); memset(P->personal, 0, sizeof(P->personal)); return blake2b_init_param(S, P); } int blake2b_init_key(blake2b_state * S, size_t outlen, const void *key, size_t keylen) { blake2b_param P[1]; if ((!outlen) || (outlen > BLAKE2B_OUTBYTES)) return -1; if (!key || !keylen || keylen > BLAKE2B_KEYBYTES) return -1; P->digest_length = (uint8_t) outlen; P->key_length = (uint8_t) keylen; P->fanout = 1; P->depth = 1; store32(&P->leaf_length, 0); store32(&P->node_offset, 0); store32(&P->xof_length, 0); P->node_depth = 0; P->inner_length = 0; memset(P->reserved, 0, sizeof(P->reserved)); memset(P->salt, 0, sizeof(P->salt)); memset(P->personal, 0, sizeof(P->personal)); if (blake2b_init_param(S, P) < 0) return -1; { uint8_t block[BLAKE2B_BLOCKBYTES]; memset(block, 0, BLAKE2B_BLOCKBYTES); memcpy(block, key, keylen); blake2b_update(S, block, BLAKE2B_BLOCKBYTES); secure_zero_memory(block, BLAKE2B_BLOCKBYTES); /* Burn the key from stack */ } return 0; } #define G(r,i,a,b,c,d) \ do { \ a = a + b + m[blake2b_sigma[r][2*i+0]]; \ d = rotr64(d ^ a, 32); \ c = c + d; \ b = rotr64(b ^ c, 24); \ a = a + b + m[blake2b_sigma[r][2*i+1]]; \ d = rotr64(d ^ a, 16); \ c = c + d; \ b = rotr64(b ^ c, 63); \ } while(0) #define ROUND(r) \ do { \ G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ G(r,2,v[ 2],v[ 6],v[10],v[14]); \ G(r,3,v[ 3],v[ 7],v[11],v[15]); \ G(r,4,v[ 0],v[ 5],v[10],v[15]); \ G(r,5,v[ 1],v[ 6],v[11],v[12]); \ G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \ } while(0) static void blake2b_compress(blake2b_state * S, const uint8_t block[BLAKE2B_BLOCKBYTES]) { uint64_t m[16]; uint64_t v[16]; size_t i; for (i = 0; i < 16; ++i) { m[i] = load64(block + i * sizeof(m[i])); } for (i = 0; i < 8; ++i) { v[i] = S->h[i]; } v[8] = blake2b_IV[0]; v[9] = blake2b_IV[1]; v[10] = blake2b_IV[2]; v[11] = blake2b_IV[3]; v[12] = blake2b_IV[4] ^ S->t[0]; v[13] = blake2b_IV[5] ^ S->t[1]; v[14] = blake2b_IV[6] ^ S->f[0]; v[15] = blake2b_IV[7] ^ S->f[1]; ROUND(0); ROUND(1); ROUND(2); ROUND(3); ROUND(4); ROUND(5); ROUND(6); ROUND(7); ROUND(8); ROUND(9); ROUND(10); ROUND(11); for (i = 0; i < 8; ++i) { S->h[i] = S->h[i] ^ v[i] ^ v[i + 8]; } } #undef G #undef ROUND int blake2b_update(blake2b_state * S, const void *pin, size_t inlen) { const unsigned char *in = (const unsigned char *) pin; if (inlen > 0) { size_t left = S->buflen; size_t fill = BLAKE2B_BLOCKBYTES - left; if (inlen > fill) { S->buflen = 0; memcpy(S->buf + left, in, fill); /* Fill buffer */ blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES); blake2b_compress(S, S->buf); /* Compress */ in += fill; inlen -= fill; while (inlen > BLAKE2B_BLOCKBYTES) { blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES); blake2b_compress(S, in); in += BLAKE2B_BLOCKBYTES; inlen -= BLAKE2B_BLOCKBYTES; } } memcpy(S->buf + S->buflen, in, inlen); S->buflen += inlen; } return 0; } int blake2b_final(blake2b_state * S, void *out, size_t outlen) { uint8_t buffer[BLAKE2B_OUTBYTES] = { 0 }; size_t i; if (out == NULL || outlen < S->outlen) return -1; if (blake2b_is_lastblock(S)) return -1; blake2b_increment_counter(S, S->buflen); blake2b_set_lastblock(S); memset(S->buf + S->buflen, 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */ blake2b_compress(S, S->buf); for (i = 0; i < 8; ++i) /* Output full hash to temp buffer */ store64(buffer + sizeof(S->h[i]) * i, S->h[i]); memcpy(out, buffer, S->outlen); secure_zero_memory(buffer, sizeof(buffer)); return 0; } /* inlen, at least, should be uint64_t. Others can be size_t. */ int blake2b(void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen) { blake2b_state S[1]; /* Verify parameters */ if (NULL == in && inlen > 0) return -1; if (NULL == out) return -1; if (NULL == key && keylen > 0) return -1; if (!outlen || outlen > BLAKE2B_OUTBYTES) return -1; if (keylen > BLAKE2B_KEYBYTES) return -1; if (keylen > 0) { if (blake2b_init_key(S, outlen, key, keylen) < 0) return -1; } else { if (blake2b_init(S, outlen) < 0) return -1; } blake2b_update(S, (const uint8_t *) in, inlen); blake2b_final(S, out, outlen); return 0; } int blake2(void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen) { return blake2b(out, outlen, in, inlen, key, keylen); }