X-Git-Url: https://pd.if.org/git/?p=zpackage;a=blobdiff_plain;f=libtomcrypt%2Fsrc%2Fciphers%2Ftwofish%2Ftwofish.c;fp=libtomcrypt%2Fsrc%2Fciphers%2Ftwofish%2Ftwofish.c;h=0000000000000000000000000000000000000000;hp=b1584d1955a92798ad908a924a3a7ff9194904de;hb=8525b30e7685c63751f8f6e71d0dbbceeb1280f0;hpb=d6aefd8ebda828ed4c9fef447f96882c1db52ce1 diff --git a/libtomcrypt/src/ciphers/twofish/twofish.c b/libtomcrypt/src/ciphers/twofish/twofish.c deleted file mode 100644 index b1584d1..0000000 --- a/libtomcrypt/src/ciphers/twofish/twofish.c +++ /dev/null @@ -1,711 +0,0 @@ -/* LibTomCrypt, modular cryptographic library -- Tom St Denis - * - * LibTomCrypt is a library that provides various cryptographic - * algorithms in a highly modular and flexible manner. - * - * The library is free for all purposes without any express - * guarantee it works. - */ - - /** - @file twofish.c - Implementation of Twofish by Tom St Denis - */ -#include "tomcrypt.h" - -#ifdef LTC_TWOFISH - -/* first LTC_TWOFISH_ALL_TABLES must ensure LTC_TWOFISH_TABLES is defined */ -#ifdef LTC_TWOFISH_ALL_TABLES -#ifndef LTC_TWOFISH_TABLES -#define LTC_TWOFISH_TABLES -#endif -#endif - -const struct ltc_cipher_descriptor twofish_desc = -{ - "twofish", - 7, - 16, 32, 16, 16, - &twofish_setup, - &twofish_ecb_encrypt, - &twofish_ecb_decrypt, - &twofish_test, - &twofish_done, - &twofish_keysize, - NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL -}; - -/* the two polynomials */ -#define MDS_POLY 0x169 -#define RS_POLY 0x14D - -/* The 4x8 RS Linear Transform */ -static const unsigned char RS[4][8] = { - { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E }, - { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 }, - { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 }, - { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 } -}; - -#ifdef LTC_TWOFISH_SMALL -/* sbox usage orderings */ -static const unsigned char qord[4][5] = { - { 1, 1, 0, 0, 1 }, - { 0, 1, 1, 0, 0 }, - { 0, 0, 0, 1, 1 }, - { 1, 0, 1, 1, 0 } -}; -#endif /* LTC_TWOFISH_SMALL */ - -#ifdef LTC_TWOFISH_TABLES - -#define __LTC_TWOFISH_TAB_C__ -#include "twofish_tab.c" - -#define sbox(i, x) ((ulong32)SBOX[i][(x)&255]) - -#else - -/* The Q-box tables */ -static const unsigned char qbox[2][4][16] = { -{ - { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 }, - { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD }, - { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 }, - { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA } -}, -{ - { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 }, - { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 }, - { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF }, - { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA } -} -}; - -/* computes S_i[x] */ -#ifdef LTC_CLEAN_STACK -static ulong32 _sbox(int i, ulong32 x) -#else -static ulong32 sbox(int i, ulong32 x) -#endif -{ - unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y; - - /* a0,b0 = [x/16], x mod 16 */ - a0 = (unsigned char)((x>>4)&15); - b0 = (unsigned char)((x)&15); - - /* a1 = a0 ^ b0 */ - a1 = a0 ^ b0; - - /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */ - b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15; - - /* a2,b2 = t0[a1], t1[b1] */ - a2 = qbox[i][0][(int)a1]; - b2 = qbox[i][1][(int)b1]; - - /* a3 = a2 ^ b2 */ - a3 = a2 ^ b2; - - /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */ - b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15; - - /* a4,b4 = t2[a3], t3[b3] */ - a4 = qbox[i][2][(int)a3]; - b4 = qbox[i][3][(int)b3]; - - /* y = 16b4 + a4 */ - y = (b4 << 4) + a4; - - /* return result */ - return (ulong32)y; -} - -#ifdef LTC_CLEAN_STACK -static ulong32 sbox(int i, ulong32 x) -{ - ulong32 y; - y = _sbox(i, x); - burn_stack(sizeof(unsigned char) * 11); - return y; -} -#endif /* LTC_CLEAN_STACK */ - -#endif /* LTC_TWOFISH_TABLES */ - -/* computes ab mod p */ -static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p) -{ - ulong32 result, B[2], P[2]; - - P[1] = p; - B[1] = b; - result = P[0] = B[0] = 0; - - /* unrolled branchless GF multiplier */ - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); - result ^= B[a&1]; - - return result; -} - -/* computes [y0 y1 y2 y3] = MDS . [x0] */ -#ifndef LTC_TWOFISH_TABLES -static ulong32 mds_column_mult(unsigned char in, int col) -{ - ulong32 x01, x5B, xEF; - - x01 = in; - x5B = gf_mult(in, 0x5B, MDS_POLY); - xEF = gf_mult(in, 0xEF, MDS_POLY); - - switch (col) { - case 0: - return (x01 << 0 ) | - (x5B << 8 ) | - (xEF << 16) | - (xEF << 24); - case 1: - return (xEF << 0 ) | - (xEF << 8 ) | - (x5B << 16) | - (x01 << 24); - case 2: - return (x5B << 0 ) | - (xEF << 8 ) | - (x01 << 16) | - (xEF << 24); - case 3: - return (x5B << 0 ) | - (x01 << 8 ) | - (xEF << 16) | - (x5B << 24); - } - /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */ - return 0; -} - -#else /* !LTC_TWOFISH_TABLES */ - -#define mds_column_mult(x, i) mds_tab[i][x] - -#endif /* LTC_TWOFISH_TABLES */ - -/* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */ -static void mds_mult(const unsigned char *in, unsigned char *out) -{ - int x; - ulong32 tmp; - for (tmp = x = 0; x < 4; x++) { - tmp ^= mds_column_mult(in[x], x); - } - STORE32L(tmp, out); -} - -#ifdef LTC_TWOFISH_ALL_TABLES -/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ -static void rs_mult(const unsigned char *in, unsigned char *out) -{ - ulong32 tmp; - tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^ - rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]]; - STORE32L(tmp, out); -} - -#else /* !LTC_TWOFISH_ALL_TABLES */ - -/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ -static void rs_mult(const unsigned char *in, unsigned char *out) -{ - int x, y; - for (x = 0; x < 4; x++) { - out[x] = 0; - for (y = 0; y < 8; y++) { - out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY); - } - } -} - -#endif - -/* computes h(x) */ -static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset) -{ - int x; - unsigned char y[4]; - for (x = 0; x < 4; x++) { - y[x] = in[x]; - } - switch (k) { - case 4: - y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]); - y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]); - y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]); - y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]); - /* FALLTHROUGH */ - case 3: - y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]); - y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]); - y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]); - y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]); - /* FALLTHROUGH */ - case 2: - y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0])); - y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1])); - y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2])); - y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3])); - /* FALLTHROUGH */ - } - mds_mult(y, out); -} - -#ifndef LTC_TWOFISH_SMALL - -/* for GCC we don't use pointer aliases */ -#if defined(__GNUC__) - #define S1 skey->twofish.S[0] - #define S2 skey->twofish.S[1] - #define S3 skey->twofish.S[2] - #define S4 skey->twofish.S[3] -#endif - -/* the G function */ -#define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)]) -#define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)]) - -#else - -#ifdef LTC_CLEAN_STACK -static ulong32 _g_func(ulong32 x, symmetric_key *key) -#else -static ulong32 g_func(ulong32 x, symmetric_key *key) -#endif -{ - unsigned char g, i, y, z; - ulong32 res; - - res = 0; - for (y = 0; y < 4; y++) { - z = key->twofish.start; - - /* do unkeyed substitution */ - g = sbox(qord[y][z++], (x >> (8*y)) & 255); - - /* first subkey */ - i = 0; - - /* do key mixing+sbox until z==5 */ - while (z != 5) { - g = g ^ key->twofish.S[4*i++ + y]; - g = sbox(qord[y][z++], g); - } - - /* multiply g by a column of the MDS */ - res ^= mds_column_mult(g, y); - } - return res; -} - -#define g1_func(x, key) g_func(ROLc(x, 8), key) - -#ifdef LTC_CLEAN_STACK -static ulong32 g_func(ulong32 x, symmetric_key *key) -{ - ulong32 y; - y = _g_func(x, key); - burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32)); - return y; -} -#endif /* LTC_CLEAN_STACK */ - -#endif /* LTC_TWOFISH_SMALL */ - - /** - Initialize the Twofish block cipher - @param key The symmetric key you wish to pass - @param keylen The key length in bytes - @param num_rounds The number of rounds desired (0 for default) - @param skey The key in as scheduled by this function. - @return CRYPT_OK if successful - */ -#ifdef LTC_CLEAN_STACK -static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) -#else -int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) -#endif -{ -#ifndef LTC_TWOFISH_SMALL - unsigned char S[4*4], tmpx0, tmpx1; -#endif - int k, x, y; - unsigned char tmp[4], tmp2[4], M[8*4]; - ulong32 A, B; - - LTC_ARGCHK(key != NULL); - LTC_ARGCHK(skey != NULL); - - /* invalid arguments? */ - if (num_rounds != 16 && num_rounds != 0) { - return CRYPT_INVALID_ROUNDS; - } - - if (keylen != 16 && keylen != 24 && keylen != 32) { - return CRYPT_INVALID_KEYSIZE; - } - - /* k = keysize/64 [but since our keysize is in bytes...] */ - k = keylen / 8; - - /* copy the key into M */ - for (x = 0; x < keylen; x++) { - M[x] = key[x] & 255; - } - - /* create the S[..] words */ -#ifndef LTC_TWOFISH_SMALL - for (x = 0; x < k; x++) { - rs_mult(M+(x*8), S+(x*4)); - } -#else - for (x = 0; x < k; x++) { - rs_mult(M+(x*8), skey->twofish.S+(x*4)); - } -#endif - - /* make subkeys */ - for (x = 0; x < 20; x++) { - /* A = h(p * 2x, Me) */ - for (y = 0; y < 4; y++) { - tmp[y] = x+x; - } - h_func(tmp, tmp2, M, k, 0); - LOAD32L(A, tmp2); - - /* B = ROL(h(p * (2x + 1), Mo), 8) */ - for (y = 0; y < 4; y++) { - tmp[y] = (unsigned char)(x+x+1); - } - h_func(tmp, tmp2, M, k, 1); - LOAD32L(B, tmp2); - B = ROLc(B, 8); - - /* K[2i] = A + B */ - skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL; - - /* K[2i+1] = (A + 2B) <<< 9 */ - skey->twofish.K[x+x+1] = ROLc(B + B + A, 9); - } - -#ifndef LTC_TWOFISH_SMALL - /* make the sboxes (large ram variant) */ - if (k == 2) { - for (x = 0; x < 256; x++) { - tmpx0 = (unsigned char)sbox(0, x); - tmpx1 = (unsigned char)sbox(1, x); - skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0); - skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1); - skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2); - skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3); - } - } else if (k == 3) { - for (x = 0; x < 256; x++) { - tmpx0 = (unsigned char)sbox(0, x); - tmpx1 = (unsigned char)sbox(1, x); - skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0); - skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1); - skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2); - skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3); - } - } else { - for (x = 0; x < 256; x++) { - tmpx0 = (unsigned char)sbox(0, x); - tmpx1 = (unsigned char)sbox(1, x); - skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0); - skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1); - skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2); - skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3); - } - } -#else - /* where to start in the sbox layers */ - /* small ram variant */ - switch (k) { - case 4 : skey->twofish.start = 0; break; - case 3 : skey->twofish.start = 1; break; - default: skey->twofish.start = 2; break; - } -#endif - return CRYPT_OK; -} - -#ifdef LTC_CLEAN_STACK -int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) -{ - int x; - x = _twofish_setup(key, keylen, num_rounds, skey); - burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2); - return x; -} -#endif - -/** - Encrypts a block of text with Twofish - @param pt The input plaintext (16 bytes) - @param ct The output ciphertext (16 bytes) - @param skey The key as scheduled - @return CRYPT_OK if successful -*/ -#ifdef LTC_CLEAN_STACK -static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) -#else -int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) -#endif -{ - ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; - int r; -#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) - ulong32 *S1, *S2, *S3, *S4; -#endif - - LTC_ARGCHK(pt != NULL); - LTC_ARGCHK(ct != NULL); - LTC_ARGCHK(skey != NULL); - -#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) - S1 = skey->twofish.S[0]; - S2 = skey->twofish.S[1]; - S3 = skey->twofish.S[2]; - S4 = skey->twofish.S[3]; -#endif - - LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]); - LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]); - a ^= skey->twofish.K[0]; - b ^= skey->twofish.K[1]; - c ^= skey->twofish.K[2]; - d ^= skey->twofish.K[3]; - - k = skey->twofish.K + 8; - for (r = 8; r != 0; --r) { - t2 = g1_func(b, skey); - t1 = g_func(a, skey) + t2; - c = RORc(c ^ (t1 + k[0]), 1); - d = ROLc(d, 1) ^ (t2 + t1 + k[1]); - - t2 = g1_func(d, skey); - t1 = g_func(c, skey) + t2; - a = RORc(a ^ (t1 + k[2]), 1); - b = ROLc(b, 1) ^ (t2 + t1 + k[3]); - k += 4; - } - - /* output with "undo last swap" */ - ta = c ^ skey->twofish.K[4]; - tb = d ^ skey->twofish.K[5]; - tc = a ^ skey->twofish.K[6]; - td = b ^ skey->twofish.K[7]; - - /* store output */ - STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]); - STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]); - - return CRYPT_OK; -} - -#ifdef LTC_CLEAN_STACK -int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) -{ - int err = _twofish_ecb_encrypt(pt, ct, skey); - burn_stack(sizeof(ulong32) * 10 + sizeof(int)); - return err; -} -#endif - -/** - Decrypts a block of text with Twofish - @param ct The input ciphertext (16 bytes) - @param pt The output plaintext (16 bytes) - @param skey The key as scheduled - @return CRYPT_OK if successful -*/ -#ifdef LTC_CLEAN_STACK -static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) -#else -int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) -#endif -{ - ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; - int r; -#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) - ulong32 *S1, *S2, *S3, *S4; -#endif - - LTC_ARGCHK(pt != NULL); - LTC_ARGCHK(ct != NULL); - LTC_ARGCHK(skey != NULL); - -#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) - S1 = skey->twofish.S[0]; - S2 = skey->twofish.S[1]; - S3 = skey->twofish.S[2]; - S4 = skey->twofish.S[3]; -#endif - - /* load input */ - LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]); - LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]); - - /* undo undo final swap */ - a = tc ^ skey->twofish.K[6]; - b = td ^ skey->twofish.K[7]; - c = ta ^ skey->twofish.K[4]; - d = tb ^ skey->twofish.K[5]; - - k = skey->twofish.K + 36; - for (r = 8; r != 0; --r) { - t2 = g1_func(d, skey); - t1 = g_func(c, skey) + t2; - a = ROLc(a, 1) ^ (t1 + k[2]); - b = RORc(b ^ (t2 + t1 + k[3]), 1); - - t2 = g1_func(b, skey); - t1 = g_func(a, skey) + t2; - c = ROLc(c, 1) ^ (t1 + k[0]); - d = RORc(d ^ (t2 + t1 + k[1]), 1); - k -= 4; - } - - /* pre-white */ - a ^= skey->twofish.K[0]; - b ^= skey->twofish.K[1]; - c ^= skey->twofish.K[2]; - d ^= skey->twofish.K[3]; - - /* store */ - STORE32L(a, &pt[0]); STORE32L(b, &pt[4]); - STORE32L(c, &pt[8]); STORE32L(d, &pt[12]); - return CRYPT_OK; -} - -#ifdef LTC_CLEAN_STACK -int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) -{ - int err =_twofish_ecb_decrypt(ct, pt, skey); - burn_stack(sizeof(ulong32) * 10 + sizeof(int)); - return err; -} -#endif - -/** - Performs a self-test of the Twofish block cipher - @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled -*/ -int twofish_test(void) -{ - #ifndef LTC_TEST - return CRYPT_NOP; - #else - static const struct { - int keylen; - unsigned char key[32], pt[16], ct[16]; - } tests[] = { - { 16, - { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, - 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }, - { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, - 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }, - { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, - 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 } - }, { - 24, - { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, - 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88, - 0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 }, - { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, - 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 }, - { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, - 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 } - }, { - 32, - { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, - 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, - 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, - 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }, - { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, - 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }, - { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, - 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA } - } -}; - - - symmetric_key key; - unsigned char tmp[2][16]; - int err, i, y; - - for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { - if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { - return err; - } - twofish_ecb_encrypt(tests[i].pt, tmp[0], &key); - twofish_ecb_decrypt(tmp[0], tmp[1], &key); - if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Twofish Encrypt", i) != 0 || - compare_testvector(tmp[1], 16, tests[i].pt, 16, "Twofish Decrypt", i) != 0) { - return CRYPT_FAIL_TESTVECTOR; - } - /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ - for (y = 0; y < 16; y++) tmp[0][y] = 0; - for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key); - for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key); - for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; - } - return CRYPT_OK; -#endif -} - -/** Terminate the context - @param skey The scheduled key -*/ -void twofish_done(symmetric_key *skey) -{ - LTC_UNUSED_PARAM(skey); -} - -/** - Gets suitable key size - @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. - @return CRYPT_OK if the input key size is acceptable. -*/ -int twofish_keysize(int *keysize) -{ - LTC_ARGCHK(keysize); - if (*keysize < 16) - return CRYPT_INVALID_KEYSIZE; - if (*keysize < 24) { - *keysize = 16; - return CRYPT_OK; - } else if (*keysize < 32) { - *keysize = 24; - return CRYPT_OK; - } else { - *keysize = 32; - return CRYPT_OK; - } -} - -#endif - - - - -/* ref: $Format:%D$ */ -/* git commit: $Format:%H$ */ -/* commit time: $Format:%ai$ */