2 * Adapted from libtomcrypt by Tom St Denis
4 * by Nathan Wagner and released into the public domain
7 #define ENDIAN_NEUTRAL 1
8 #define LTC_SMALL_CODE 1
10 #include "tomcrypt_macros.h"
13 #define F0(x,y,z) (z ^ (x & (y ^ z)))
14 #define F1(x,y,z) (x ^ y ^ z)
15 #define F2(x,y,z) ((x & y) | (z & (x | y)))
16 #define F3(x,y,z) (x ^ y ^ z)
18 static int sha1_compress(hash_state *md, unsigned char *buf)
20 ulong32 a,b,c,d,e,W[80],i;
25 /* copy the state into 512-bits into W[0..15] */
26 for (i = 0; i < 16; i++) {
27 LOAD32H(W[i], buf + (4*i));
31 a = md->sha1.state[0];
32 b = md->sha1.state[1];
33 c = md->sha1.state[2];
34 d = md->sha1.state[3];
35 e = md->sha1.state[4];
38 for (i = 16; i < 80; i++) {
39 W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
44 #define FF0(a,b,c,d,e,i) e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30);
45 #define FF1(a,b,c,d,e,i) e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30);
46 #define FF2(a,b,c,d,e,i) e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30);
47 #define FF3(a,b,c,d,e,i) e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30);
51 for (i = 0; i < 20; ) {
52 FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
56 FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
60 FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
64 FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
69 for (i = 0; i < 20; ) {
111 md->sha1.state[0] = md->sha1.state[0] + a;
112 md->sha1.state[1] = md->sha1.state[1] + b;
113 md->sha1.state[2] = md->sha1.state[2] + c;
114 md->sha1.state[3] = md->sha1.state[3] + d;
115 md->sha1.state[4] = md->sha1.state[4] + e;
120 int sha1_init(hash_state * md)
122 LTC_ARGCHK(md != NULL);
123 md->sha1.state[0] = 0x67452301UL;
124 md->sha1.state[1] = 0xefcdab89UL;
125 md->sha1.state[2] = 0x98badcfeUL;
126 md->sha1.state[3] = 0x10325476UL;
127 md->sha1.state[4] = 0xc3d2e1f0UL;
133 HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
135 int sha1_done(hash_state * md, unsigned char *out) {
138 LTC_ARGCHK(md != NULL);
139 LTC_ARGCHK(out != NULL);
141 if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
142 return CRYPT_INVALID_ARG;
145 /* increase the length of the message */
146 md->sha1.length += md->sha1.curlen * 8;
148 /* append the '1' bit */
149 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
151 /* if the length is currently above 56 bytes we append zeros
152 * then compress. Then we can fall back to padding zeros and length
153 * encoding like normal.
155 if (md->sha1.curlen > 56) {
156 while (md->sha1.curlen < 64) {
157 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
159 sha1_compress(md, md->sha1.buf);
163 /* pad upto 56 bytes of zeroes */
164 while (md->sha1.curlen < 56) {
165 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
169 STORE64H(md->sha1.length, md->sha1.buf+56);
170 sha1_compress(md, md->sha1.buf);
173 for (i = 0; i < 5; i++) {
174 STORE32H(md->sha1.state[i], out+(4*i));
176 #ifdef LTC_CLEAN_STACK
177 zeromem(md, sizeof(hash_state));
182 int sha1_test(void) {
186 static const struct {
188 unsigned char hash[20];
191 { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
192 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
193 0x9c, 0xd0, 0xd8, 0x9d }
195 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
196 { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
197 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
198 0xE5, 0x46, 0x70, 0xF1 }
203 unsigned char tmp[20];
206 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
208 sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
210 if (XMEMCMP(tmp, tests[i].hash, 20) != 0) {
211 return CRYPT_FAIL_TESTVECTOR;