]> pd.if.org Git - zpackage/blobdiff - lzma/lz/lz_decoder.c
integrate lzma
[zpackage] / lzma / lz / lz_decoder.c
diff --git a/lzma/lz/lz_decoder.c b/lzma/lz/lz_decoder.c
new file mode 100644 (file)
index 0000000..2328a8e
--- /dev/null
@@ -0,0 +1,300 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file       lz_decoder.c
+/// \brief      LZ out window
+///
+//  Authors:    Igor Pavlov
+//              Lasse Collin
+//
+//  This file has been put into the public domain.
+//  You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+// liblzma supports multiple LZ77-based filters. The LZ part is shared
+// between these filters. The LZ code takes care of dictionary handling
+// and passing the data between filters in the chain. The filter-specific
+// part decodes from the input buffer to the dictionary.
+
+
+#include "lz_decoder.h"
+
+
+struct lzma_coder_s {
+       /// Dictionary (history buffer)
+       lzma_dict dict;
+
+       /// The actual LZ-based decoder e.g. LZMA
+       lzma_lz_decoder lz;
+
+       /// Next filter in the chain, if any. Note that LZMA and LZMA2 are
+       /// only allowed as the last filter, but the long-range filter in
+       /// future can be in the middle of the chain.
+       lzma_next_coder next;
+
+       /// True if the next filter in the chain has returned LZMA_STREAM_END.
+       bool next_finished;
+
+       /// True if the LZ decoder (e.g. LZMA) has detected end of payload
+       /// marker. This may become true before next_finished becomes true.
+       bool this_finished;
+
+       /// Temporary buffer needed when the LZ-based filter is not the last
+       /// filter in the chain. The output of the next filter is first
+       /// decoded into buffer[], which is then used as input for the actual
+       /// LZ-based decoder.
+       struct {
+               size_t pos;
+               size_t size;
+               uint8_t buffer[LZMA_BUFFER_SIZE];
+       } temp;
+};
+
+
+static void
+lz_decoder_reset(lzma_coder *coder)
+{
+       coder->dict.pos = 0;
+       coder->dict.full = 0;
+       coder->dict.buf[coder->dict.size - 1] = '\0';
+       coder->dict.need_reset = false;
+       return;
+}
+
+
+static lzma_ret
+decode_buffer(lzma_coder *coder,
+               const uint8_t *restrict in, size_t *restrict in_pos,
+               size_t in_size, uint8_t *restrict out,
+               size_t *restrict out_pos, size_t out_size)
+{
+       while (true) {
+               // Wrap the dictionary if needed.
+               if (coder->dict.pos == coder->dict.size)
+                       coder->dict.pos = 0;
+
+               // Store the current dictionary position. It is needed to know
+               // where to start copying to the out[] buffer.
+               const size_t dict_start = coder->dict.pos;
+
+               // Calculate how much we allow coder->lz.code() to decode.
+               // It must not decode past the end of the dictionary
+               // buffer, and we don't want it to decode more than is
+               // actually needed to fill the out[] buffer.
+               coder->dict.limit = coder->dict.pos
+                               + my_min(out_size - *out_pos,
+                                       coder->dict.size - coder->dict.pos);
+
+               // Call the coder->lz.code() to do the actual decoding.
+               const lzma_ret ret = coder->lz.code(
+                               coder->lz.coder, &coder->dict,
+                               in, in_pos, in_size);
+
+               // Copy the decoded data from the dictionary to the out[]
+               // buffer.
+               const size_t copy_size = coder->dict.pos - dict_start;
+               assert(copy_size <= out_size - *out_pos);
+               memcpy(out + *out_pos, coder->dict.buf + dict_start,
+                               copy_size);
+               *out_pos += copy_size;
+
+               // Reset the dictionary if so requested by coder->lz.code().
+               if (coder->dict.need_reset) {
+                       lz_decoder_reset(coder);
+
+                       // Since we reset dictionary, we don't check if
+                       // dictionary became full.
+                       if (ret != LZMA_OK || *out_pos == out_size)
+                               return ret;
+               } else {
+                       // Return if everything got decoded or an error
+                       // occurred, or if there's no more data to decode.
+                       //
+                       // Note that detecting if there's something to decode
+                       // is done by looking if dictionary become full
+                       // instead of looking if *in_pos == in_size. This
+                       // is because it is possible that all the input was
+                       // consumed already but some data is pending to be
+                       // written to the dictionary.
+                       if (ret != LZMA_OK || *out_pos == out_size
+                                       || coder->dict.pos < coder->dict.size)
+                               return ret;
+               }
+       }
+}
+
+
+static lzma_ret
+lz_decode(lzma_coder *coder,
+               const lzma_allocator *allocator lzma_attribute((__unused__)),
+               const uint8_t *restrict in, size_t *restrict in_pos,
+               size_t in_size, uint8_t *restrict out,
+               size_t *restrict out_pos, size_t out_size,
+               lzma_action action)
+{
+       if (coder->next.code == NULL)
+               return decode_buffer(coder, in, in_pos, in_size,
+                               out, out_pos, out_size);
+
+       // We aren't the last coder in the chain, we need to decode
+       // our input to a temporary buffer.
+       while (*out_pos < out_size) {
+               // Fill the temporary buffer if it is empty.
+               if (!coder->next_finished
+                               && coder->temp.pos == coder->temp.size) {
+                       coder->temp.pos = 0;
+                       coder->temp.size = 0;
+
+                       const lzma_ret ret = coder->next.code(
+                                       coder->next.coder,
+                                       allocator, in, in_pos, in_size,
+                                       coder->temp.buffer, &coder->temp.size,
+                                       LZMA_BUFFER_SIZE, action);
+
+                       if (ret == LZMA_STREAM_END)
+                               coder->next_finished = true;
+                       else if (ret != LZMA_OK || coder->temp.size == 0)
+                               return ret;
+               }
+
+               if (coder->this_finished) {
+                       if (coder->temp.size != 0)
+                               return LZMA_DATA_ERROR;
+
+                       if (coder->next_finished)
+                               return LZMA_STREAM_END;
+
+                       return LZMA_OK;
+               }
+
+               const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
+                               &coder->temp.pos, coder->temp.size,
+                               out, out_pos, out_size);
+
+               if (ret == LZMA_STREAM_END)
+                       coder->this_finished = true;
+               else if (ret != LZMA_OK)
+                       return ret;
+               else if (coder->next_finished && *out_pos < out_size)
+                       return LZMA_DATA_ERROR;
+       }
+
+       return LZMA_OK;
+}
+
+
+static void
+lz_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
+{
+       lzma_next_end(&coder->next, allocator);
+       lzma_free(coder->dict.buf, allocator);
+
+       if (coder->lz.end != NULL)
+               coder->lz.end(coder->lz.coder, allocator);
+       else
+               lzma_free(coder->lz.coder, allocator);
+
+       lzma_free(coder, allocator);
+       return;
+}
+
+
+extern lzma_ret
+lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+               const lzma_filter_info *filters,
+               lzma_ret (*lz_init)(lzma_lz_decoder *lz,
+                       const lzma_allocator *allocator, const void *options,
+                       lzma_lz_options *lz_options))
+{
+       // Allocate the base structure if it isn't already allocated.
+       if (next->coder == NULL) {
+               next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+               if (next->coder == NULL)
+                       return LZMA_MEM_ERROR;
+
+               next->code = &lz_decode;
+               next->end = &lz_decoder_end;
+
+               next->coder->dict.buf = NULL;
+               next->coder->dict.size = 0;
+               next->coder->lz = LZMA_LZ_DECODER_INIT;
+               next->coder->next = LZMA_NEXT_CODER_INIT;
+       }
+
+       // Allocate and initialize the LZ-based decoder. It will also give
+       // us the dictionary size.
+       lzma_lz_options lz_options;
+       return_if_error(lz_init(&next->coder->lz, allocator,
+                       filters[0].options, &lz_options));
+
+       // If the dictionary size is very small, increase it to 4096 bytes.
+       // This is to prevent constant wrapping of the dictionary, which
+       // would slow things down. The downside is that since we don't check
+       // separately for the real dictionary size, we may happily accept
+       // corrupt files.
+       if (lz_options.dict_size < 4096)
+               lz_options.dict_size = 4096;
+
+       // Make dictionary size a multipe of 16. Some LZ-based decoders like
+       // LZMA use the lowest bits lzma_dict.pos to know the alignment of the
+       // data. Aligned buffer is also good when memcpying from the
+       // dictionary to the output buffer, since applications are
+       // recommended to give aligned buffers to liblzma.
+       //
+       // Avoid integer overflow.
+       if (lz_options.dict_size > SIZE_MAX - 15)
+               return LZMA_MEM_ERROR;
+
+       lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15));
+
+       // Allocate and initialize the dictionary.
+       if (next->coder->dict.size != lz_options.dict_size) {
+               lzma_free(next->coder->dict.buf, allocator);
+               next->coder->dict.buf
+                               = lzma_alloc(lz_options.dict_size, allocator);
+               if (next->coder->dict.buf == NULL)
+                       return LZMA_MEM_ERROR;
+
+               next->coder->dict.size = lz_options.dict_size;
+       }
+
+       lz_decoder_reset(next->coder);
+
+       // Use the preset dictionary if it was given to us.
+       if (lz_options.preset_dict != NULL
+                       && lz_options.preset_dict_size > 0) {
+               // If the preset dictionary is bigger than the actual
+               // dictionary, copy only the tail.
+               const size_t copy_size = my_min(lz_options.preset_dict_size,
+                               lz_options.dict_size);
+               const size_t offset = lz_options.preset_dict_size - copy_size;
+               memcpy(next->coder->dict.buf, lz_options.preset_dict + offset,
+                               copy_size);
+               next->coder->dict.pos = copy_size;
+               next->coder->dict.full = copy_size;
+       }
+
+       // Miscellaneous initializations
+       next->coder->next_finished = false;
+       next->coder->this_finished = false;
+       next->coder->temp.pos = 0;
+       next->coder->temp.size = 0;
+
+       // Initialize the next filter in the chain, if any.
+       return lzma_next_filter_init(&next->coder->next, allocator,
+                       filters + 1);
+}
+
+
+extern uint64_t
+lzma_lz_decoder_memusage(size_t dictionary_size)
+{
+       return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
+}
+
+
+extern void
+lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
+{
+       coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size);
+}