]> pd.if.org Git - zpackage/blobdiff - lzma/lz/lz_encoder.c
integrate lzma
[zpackage] / lzma / lz / lz_encoder.c
diff --git a/lzma/lz/lz_encoder.c b/lzma/lz/lz_encoder.c
new file mode 100644 (file)
index 0000000..5a2be79
--- /dev/null
@@ -0,0 +1,609 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file       lz_encoder.c
+/// \brief      LZ in window
+///
+//  Authors:    Igor Pavlov
+//              Lasse Collin
+//
+//  This file has been put into the public domain.
+//  You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lz_encoder.h"
+#include "lz_encoder_hash.h"
+
+// See lz_encoder_hash.h. This is a bit hackish but avoids making
+// endianness a conditional in makefiles.
+#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
+#      include "lz_encoder_hash_table.h"
+#endif
+
+#include "memcmplen.h"
+
+
+struct lzma_coder_s {
+       /// LZ-based encoder e.g. LZMA
+       lzma_lz_encoder lz;
+
+       /// History buffer and match finder
+       lzma_mf mf;
+
+       /// Next coder in the chain
+       lzma_next_coder next;
+};
+
+
+/// \brief      Moves the data in the input window to free space for new data
+///
+/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
+/// bytes of input history available all the time. Now and then we need to
+/// "slide" the buffer to make space for the new data to the end of the
+/// buffer. At the same time, data older than keep_size_before is dropped.
+///
+static void
+move_window(lzma_mf *mf)
+{
+       // Align the move to a multiple of 16 bytes. Some LZ-based encoders
+       // like LZMA use the lowest bits of mf->read_pos to know the
+       // alignment of the uncompressed data. We also get better speed
+       // for memmove() with aligned buffers.
+       assert(mf->read_pos > mf->keep_size_before);
+       const uint32_t move_offset
+               = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
+
+       assert(mf->write_pos > move_offset);
+       const size_t move_size = mf->write_pos - move_offset;
+
+       assert(move_offset + move_size <= mf->size);
+
+       memmove(mf->buffer, mf->buffer + move_offset, move_size);
+
+       mf->offset += move_offset;
+       mf->read_pos -= move_offset;
+       mf->read_limit -= move_offset;
+       mf->write_pos -= move_offset;
+
+       return;
+}
+
+
+/// \brief      Tries to fill the input window (mf->buffer)
+///
+/// If we are the last encoder in the chain, our input data is in in[].
+/// Otherwise we call the next filter in the chain to process in[] and
+/// write its output to mf->buffer.
+///
+/// This function must not be called once it has returned LZMA_STREAM_END.
+///
+static lzma_ret
+fill_window(lzma_coder *coder, const lzma_allocator *allocator,
+               const uint8_t *in, size_t *in_pos, size_t in_size,
+               lzma_action action)
+{
+       assert(coder->mf.read_pos <= coder->mf.write_pos);
+
+       // Move the sliding window if needed.
+       if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
+               move_window(&coder->mf);
+
+       // Maybe this is ugly, but lzma_mf uses uint32_t for most things
+       // (which I find cleanest), but we need size_t here when filling
+       // the history window.
+       size_t write_pos = coder->mf.write_pos;
+       lzma_ret ret;
+       if (coder->next.code == NULL) {
+               // Not using a filter, simply memcpy() as much as possible.
+               lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
+                               &write_pos, coder->mf.size);
+
+               ret = action != LZMA_RUN && *in_pos == in_size
+                               ? LZMA_STREAM_END : LZMA_OK;
+
+       } else {
+               ret = coder->next.code(coder->next.coder, allocator,
+                               in, in_pos, in_size,
+                               coder->mf.buffer, &write_pos,
+                               coder->mf.size, action);
+       }
+
+       coder->mf.write_pos = write_pos;
+
+       // Silence Valgrind. lzma_memcmplen() can read extra bytes
+       // and Valgrind will give warnings if those bytes are uninitialized
+       // because Valgrind cannot see that the values of the uninitialized
+       // bytes are eventually ignored.
+       memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
+
+       // If end of stream has been reached or flushing completed, we allow
+       // the encoder to process all the input (that is, read_pos is allowed
+       // to reach write_pos). Otherwise we keep keep_size_after bytes
+       // available as prebuffer.
+       if (ret == LZMA_STREAM_END) {
+               assert(*in_pos == in_size);
+               ret = LZMA_OK;
+               coder->mf.action = action;
+               coder->mf.read_limit = coder->mf.write_pos;
+
+       } else if (coder->mf.write_pos > coder->mf.keep_size_after) {
+               // This needs to be done conditionally, because if we got
+               // only little new input, there may be too little input
+               // to do any encoding yet.
+               coder->mf.read_limit = coder->mf.write_pos
+                               - coder->mf.keep_size_after;
+       }
+
+       // Restart the match finder after finished LZMA_SYNC_FLUSH.
+       if (coder->mf.pending > 0
+                       && coder->mf.read_pos < coder->mf.read_limit) {
+               // Match finder may update coder->pending and expects it to
+               // start from zero, so use a temporary variable.
+               const uint32_t pending = coder->mf.pending;
+               coder->mf.pending = 0;
+
+               // Rewind read_pos so that the match finder can hash
+               // the pending bytes.
+               assert(coder->mf.read_pos >= pending);
+               coder->mf.read_pos -= pending;
+
+               // Call the skip function directly instead of using
+               // mf_skip(), since we don't want to touch mf->read_ahead.
+               coder->mf.skip(&coder->mf, pending);
+       }
+
+       return ret;
+}
+
+
+static lzma_ret
+lz_encode(lzma_coder *coder, const lzma_allocator *allocator,
+               const uint8_t *restrict in, size_t *restrict in_pos,
+               size_t in_size,
+               uint8_t *restrict out, size_t *restrict out_pos,
+               size_t out_size, lzma_action action)
+{
+       while (*out_pos < out_size
+                       && (*in_pos < in_size || action != LZMA_RUN)) {
+               // Read more data to coder->mf.buffer if needed.
+               if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
+                               >= coder->mf.read_limit)
+                       return_if_error(fill_window(coder, allocator,
+                                       in, in_pos, in_size, action));
+
+               // Encode
+               const lzma_ret ret = coder->lz.code(coder->lz.coder,
+                               &coder->mf, out, out_pos, out_size);
+               if (ret != LZMA_OK) {
+                       // Setting this to LZMA_RUN for cases when we are
+                       // flushing. It doesn't matter when finishing or if
+                       // an error occurred.
+                       coder->mf.action = LZMA_RUN;
+                       return ret;
+               }
+       }
+
+       return LZMA_OK;
+}
+
+
+static bool
+lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
+               const lzma_lz_options *lz_options)
+{
+       // For now, the dictionary size is limited to 1.5 GiB. This may grow
+       // in the future if needed, but it needs a little more work than just
+       // changing this check.
+       if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
+                       || lz_options->dict_size
+                               > (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
+                       || lz_options->nice_len > lz_options->match_len_max)
+               return true;
+
+       mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
+
+       mf->keep_size_after = lz_options->after_size
+                       + lz_options->match_len_max;
+
+       // To avoid constant memmove()s, allocate some extra space. Since
+       // memmove()s become more expensive when the size of the buffer
+       // increases, we reserve more space when a large dictionary is
+       // used to make the memmove() calls rarer.
+       //
+       // This works with dictionaries up to about 3 GiB. If bigger
+       // dictionary is wanted, some extra work is needed:
+       //   - Several variables in lzma_mf have to be changed from uint32_t
+       //     to size_t.
+       //   - Memory usage calculation needs something too, e.g. use uint64_t
+       //     for mf->size.
+       uint32_t reserve = lz_options->dict_size / 2;
+       if (reserve > (UINT32_C(1) << 30))
+               reserve /= 2;
+
+       reserve += (lz_options->before_size + lz_options->match_len_max
+                       + lz_options->after_size) / 2 + (UINT32_C(1) << 19);
+
+       const uint32_t old_size = mf->size;
+       mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
+
+       // Deallocate the old history buffer if it exists but has different
+       // size than what is needed now.
+       if (mf->buffer != NULL && old_size != mf->size) {
+               lzma_free(mf->buffer, allocator);
+               mf->buffer = NULL;
+       }
+
+       // Match finder options
+       mf->match_len_max = lz_options->match_len_max;
+       mf->nice_len = lz_options->nice_len;
+
+       // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
+       // mean limiting dictionary size to less than 2 GiB. With a match
+       // finder that uses multibyte resolution (hashes start at e.g. every
+       // fourth byte), cyclic_size would stay below 2 Gi even when
+       // dictionary size is greater than 2 GiB.
+       //
+       // It would be possible to allow cyclic_size >= 2 Gi, but then we
+       // would need to be careful to use 64-bit types in various places
+       // (size_t could do since we would need bigger than 32-bit address
+       // space anyway). It would also require either zeroing a multigigabyte
+       // buffer at initialization (waste of time and RAM) or allow
+       // normalization in lz_encoder_mf.c to access uninitialized
+       // memory to keep the code simpler. The current way is simple and
+       // still allows pretty big dictionaries, so I don't expect these
+       // limits to change.
+       mf->cyclic_size = lz_options->dict_size + 1;
+
+       // Validate the match finder ID and setup the function pointers.
+       switch (lz_options->match_finder) {
+#ifdef HAVE_MF_HC3
+       case LZMA_MF_HC3:
+               mf->find = &lzma_mf_hc3_find;
+               mf->skip = &lzma_mf_hc3_skip;
+               break;
+#endif
+#ifdef HAVE_MF_HC4
+       case LZMA_MF_HC4:
+               mf->find = &lzma_mf_hc4_find;
+               mf->skip = &lzma_mf_hc4_skip;
+               break;
+#endif
+#ifdef HAVE_MF_BT2
+       case LZMA_MF_BT2:
+               mf->find = &lzma_mf_bt2_find;
+               mf->skip = &lzma_mf_bt2_skip;
+               break;
+#endif
+#ifdef HAVE_MF_BT3
+       case LZMA_MF_BT3:
+               mf->find = &lzma_mf_bt3_find;
+               mf->skip = &lzma_mf_bt3_skip;
+               break;
+#endif
+#ifdef HAVE_MF_BT4
+       case LZMA_MF_BT4:
+               mf->find = &lzma_mf_bt4_find;
+               mf->skip = &lzma_mf_bt4_skip;
+               break;
+#endif
+
+       default:
+               return true;
+       }
+
+       // Calculate the sizes of mf->hash and mf->son and check that
+       // nice_len is big enough for the selected match finder.
+       const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
+       if (hash_bytes > mf->nice_len)
+               return true;
+
+       const bool is_bt = (lz_options->match_finder & 0x10) != 0;
+       uint32_t hs;
+
+       if (hash_bytes == 2) {
+               hs = 0xFFFF;
+       } else {
+               // Round dictionary size up to the next 2^n - 1 so it can
+               // be used as a hash mask.
+               hs = lz_options->dict_size - 1;
+               hs |= hs >> 1;
+               hs |= hs >> 2;
+               hs |= hs >> 4;
+               hs |= hs >> 8;
+               hs >>= 1;
+               hs |= 0xFFFF;
+
+               if (hs > (UINT32_C(1) << 24)) {
+                       if (hash_bytes == 3)
+                               hs = (UINT32_C(1) << 24) - 1;
+                       else
+                               hs >>= 1;
+               }
+       }
+
+       mf->hash_mask = hs;
+
+       ++hs;
+       if (hash_bytes > 2)
+               hs += HASH_2_SIZE;
+       if (hash_bytes > 3)
+               hs += HASH_3_SIZE;
+/*
+       No match finder uses this at the moment.
+       if (mf->hash_bytes > 4)
+               hs += HASH_4_SIZE;
+*/
+
+       const uint32_t old_hash_count = mf->hash_count;
+       const uint32_t old_sons_count = mf->sons_count;
+       mf->hash_count = hs;
+       mf->sons_count = mf->cyclic_size;
+       if (is_bt)
+               mf->sons_count *= 2;
+
+       // Deallocate the old hash array if it exists and has different size
+       // than what is needed now.
+       if (old_hash_count != mf->hash_count
+                       || old_sons_count != mf->sons_count) {
+               lzma_free(mf->hash, allocator);
+               mf->hash = NULL;
+
+               lzma_free(mf->son, allocator);
+               mf->son = NULL;
+       }
+
+       // Maximum number of match finder cycles
+       mf->depth = lz_options->depth;
+       if (mf->depth == 0) {
+               if (is_bt)
+                       mf->depth = 16 + mf->nice_len / 2;
+               else
+                       mf->depth = 4 + mf->nice_len / 4;
+       }
+
+       return false;
+}
+
+
+static bool
+lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
+               const lzma_lz_options *lz_options)
+{
+       // Allocate the history buffer.
+       if (mf->buffer == NULL) {
+               // lzma_memcmplen() is used for the dictionary buffer
+               // so we need to allocate a few extra bytes to prevent
+               // it from reading past the end of the buffer.
+               mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
+                               allocator);
+               if (mf->buffer == NULL)
+                       return true;
+
+               // Keep Valgrind happy with lzma_memcmplen() and initialize
+               // the extra bytes whose value may get read but which will
+               // effectively get ignored.
+               memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
+       }
+
+       // Use cyclic_size as initial mf->offset. This allows
+       // avoiding a few branches in the match finders. The downside is
+       // that match finder needs to be normalized more often, which may
+       // hurt performance with huge dictionaries.
+       mf->offset = mf->cyclic_size;
+       mf->read_pos = 0;
+       mf->read_ahead = 0;
+       mf->read_limit = 0;
+       mf->write_pos = 0;
+       mf->pending = 0;
+
+#if UINT32_MAX >= SIZE_MAX / 4
+       // Check for integer overflow. (Huge dictionaries are not
+       // possible on 32-bit CPU.)
+       if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
+                       || mf->sons_count > SIZE_MAX / sizeof(uint32_t))
+               return true;
+#endif
+
+       // Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
+       // is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
+       //
+       // We don't need to initialize mf->son, but not doing that may
+       // make Valgrind complain in normalization (see normalize() in
+       // lz_encoder_mf.c). Skipping the initialization is *very* good
+       // when big dictionary is used but only small amount of data gets
+       // actually compressed: most of the mf->son won't get actually
+       // allocated by the kernel, so we avoid wasting RAM and improve
+       // initialization speed a lot.
+       if (mf->hash == NULL) {
+               mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
+                               allocator);
+               mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
+                               allocator);
+
+               if (mf->hash == NULL || mf->son == NULL) {
+                       lzma_free(mf->hash, allocator);
+                       mf->hash = NULL;
+
+                       lzma_free(mf->son, allocator);
+                       mf->son = NULL;
+
+                       return true;
+               }
+       } else {
+/*
+               for (uint32_t i = 0; i < mf->hash_count; ++i)
+                       mf->hash[i] = EMPTY_HASH_VALUE;
+*/
+               memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
+       }
+
+       mf->cyclic_pos = 0;
+
+       // Handle preset dictionary.
+       if (lz_options->preset_dict != NULL
+                       && lz_options->preset_dict_size > 0) {
+               // If the preset dictionary is bigger than the actual
+               // dictionary, use only the tail.
+               mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
+               memcpy(mf->buffer, lz_options->preset_dict
+                               + lz_options->preset_dict_size - mf->write_pos,
+                               mf->write_pos);
+               mf->action = LZMA_SYNC_FLUSH;
+               mf->skip(mf, mf->write_pos);
+       }
+
+       mf->action = LZMA_RUN;
+
+       return false;
+}
+
+
+extern uint64_t
+lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
+{
+       // Old buffers must not exist when calling lz_encoder_prepare().
+       lzma_mf mf = {
+               .buffer = NULL,
+               .hash = NULL,
+               .son = NULL,
+               .hash_count = 0,
+               .sons_count = 0,
+       };
+
+       // Setup the size information into mf.
+       if (lz_encoder_prepare(&mf, NULL, lz_options))
+               return UINT64_MAX;
+
+       // Calculate the memory usage.
+       return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
+                       + mf.size + sizeof(lzma_coder);
+}
+
+
+static void
+lz_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
+{
+       lzma_next_end(&coder->next, allocator);
+
+       lzma_free(coder->mf.son, allocator);
+       lzma_free(coder->mf.hash, allocator);
+       lzma_free(coder->mf.buffer, allocator);
+
+       if (coder->lz.end != NULL)
+               coder->lz.end(coder->lz.coder, allocator);
+       else
+               lzma_free(coder->lz.coder, allocator);
+
+       lzma_free(coder, allocator);
+       return;
+}
+
+
+static lzma_ret
+lz_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
+               const lzma_filter *filters_null lzma_attribute((__unused__)),
+               const lzma_filter *reversed_filters)
+{
+       if (coder->lz.options_update == NULL)
+               return LZMA_PROG_ERROR;
+
+       return_if_error(coder->lz.options_update(
+                       coder->lz.coder, reversed_filters));
+
+       return lzma_next_filter_update(
+                       &coder->next, allocator, reversed_filters + 1);
+}
+
+
+extern lzma_ret
+lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+               const lzma_filter_info *filters,
+               lzma_ret (*lz_init)(lzma_lz_encoder *lz,
+                       const lzma_allocator *allocator, const void *options,
+                       lzma_lz_options *lz_options))
+{
+#ifdef HAVE_SMALL
+       // We need that the CRC32 table has been initialized.
+       lzma_crc32_init();
+#endif
+
+       // Allocate and initialize the base data structure.
+       if (next->coder == NULL) {
+               next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+               if (next->coder == NULL)
+                       return LZMA_MEM_ERROR;
+
+               next->code = &lz_encode;
+               next->end = &lz_encoder_end;
+               next->update = &lz_encoder_update;
+
+               next->coder->lz.coder = NULL;
+               next->coder->lz.code = NULL;
+               next->coder->lz.end = NULL;
+
+               // mf.size is initialized to silence Valgrind
+               // when used on optimized binaries (GCC may reorder
+               // code in a way that Valgrind gets unhappy).
+               next->coder->mf.buffer = NULL;
+               next->coder->mf.size = 0;
+               next->coder->mf.hash = NULL;
+               next->coder->mf.son = NULL;
+               next->coder->mf.hash_count = 0;
+               next->coder->mf.sons_count = 0;
+
+               next->coder->next = LZMA_NEXT_CODER_INIT;
+       }
+
+       // Initialize the LZ-based encoder.
+       lzma_lz_options lz_options;
+       return_if_error(lz_init(&next->coder->lz, allocator,
+                       filters[0].options, &lz_options));
+
+       // Setup the size information into next->coder->mf and deallocate
+       // old buffers if they have wrong size.
+       if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
+               return LZMA_OPTIONS_ERROR;
+
+       // Allocate new buffers if needed, and do the rest of
+       // the initialization.
+       if (lz_encoder_init(&next->coder->mf, allocator, &lz_options))
+               return LZMA_MEM_ERROR;
+
+       // Initialize the next filter in the chain, if any.
+       return lzma_next_filter_init(&next->coder->next, allocator,
+                       filters + 1);
+}
+
+
+extern LZMA_API(lzma_bool)
+lzma_mf_is_supported(lzma_match_finder mf)
+{
+       bool ret = false;
+
+#ifdef HAVE_MF_HC3
+       if (mf == LZMA_MF_HC3)
+               ret = true;
+#endif
+
+#ifdef HAVE_MF_HC4
+       if (mf == LZMA_MF_HC4)
+               ret = true;
+#endif
+
+#ifdef HAVE_MF_BT2
+       if (mf == LZMA_MF_BT2)
+               ret = true;
+#endif
+
+#ifdef HAVE_MF_BT3
+       if (mf == LZMA_MF_BT3)
+               ret = true;
+#endif
+
+#ifdef HAVE_MF_BT4
+       if (mf == LZMA_MF_BT4)
+               ret = true;
+#endif
+
+       return ret;
+}