]> pd.if.org Git - zpackage/blobdiff - lzma/tuklib/tuklib_integer.h
integrate lzma
[zpackage] / lzma / tuklib / tuklib_integer.h
diff --git a/lzma/tuklib/tuklib_integer.h b/lzma/tuklib/tuklib_integer.h
new file mode 100644 (file)
index 0000000..a7fda67
--- /dev/null
@@ -0,0 +1,523 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file       tuklib_integer.h
+/// \brief      Various integer and bit operations
+///
+/// This file provides macros or functions to do some basic integer and bit
+/// operations.
+///
+/// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l):
+///   - Byte swapping: bswapXX(num)
+///   - Byte order conversions to/from native: convXXYe(num)
+///   - Aligned reads: readXXYe(ptr)
+///   - Aligned writes: writeXXYe(ptr, num)
+///   - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr)
+///   - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num)
+///
+/// Since they can macros, the arguments should have no side effects since
+/// they may be evaluated more than once.
+///
+/// \todo       PowerPC and possibly some other architectures support
+///             byte swapping load and store instructions. This file
+///             doesn't take advantage of those instructions.
+///
+/// Bit scan operations for non-zero 32-bit integers:
+///   - Bit scan reverse (find highest non-zero bit): bsr32(num)
+///   - Count leading zeros: clz32(num)
+///   - Count trailing zeros: ctz32(num)
+///   - Bit scan forward (simply an alias for ctz32()): bsf32(num)
+///
+/// The above bit scan operations return 0-31. If num is zero,
+/// the result is undefined.
+//
+//  Authors:    Lasse Collin
+//              Joachim Henke
+//
+//  This file has been put into the public domain.
+//  You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef TUKLIB_INTEGER_H
+#define TUKLIB_INTEGER_H
+
+#include "tuklib_common.h"
+
+
+////////////////////////////////////////
+// Operating system specific features //
+////////////////////////////////////////
+
+#if defined(HAVE_BYTESWAP_H)
+       // glibc, uClibc, dietlibc
+#      include <byteswap.h>
+#      ifdef HAVE_BSWAP_16
+#              define bswap16(num) bswap_16(num)
+#      endif
+#      ifdef HAVE_BSWAP_32
+#              define bswap32(num) bswap_32(num)
+#      endif
+#      ifdef HAVE_BSWAP_64
+#              define bswap64(num) bswap_64(num)
+#      endif
+
+#elif defined(HAVE_SYS_ENDIAN_H)
+       // *BSDs and Darwin
+#      include <sys/endian.h>
+
+#elif defined(HAVE_SYS_BYTEORDER_H)
+       // Solaris
+#      include <sys/byteorder.h>
+#      ifdef BSWAP_16
+#              define bswap16(num) BSWAP_16(num)
+#      endif
+#      ifdef BSWAP_32
+#              define bswap32(num) BSWAP_32(num)
+#      endif
+#      ifdef BSWAP_64
+#              define bswap64(num) BSWAP_64(num)
+#      endif
+#      ifdef BE_16
+#              define conv16be(num) BE_16(num)
+#      endif
+#      ifdef BE_32
+#              define conv32be(num) BE_32(num)
+#      endif
+#      ifdef BE_64
+#              define conv64be(num) BE_64(num)
+#      endif
+#      ifdef LE_16
+#              define conv16le(num) LE_16(num)
+#      endif
+#      ifdef LE_32
+#              define conv32le(num) LE_32(num)
+#      endif
+#      ifdef LE_64
+#              define conv64le(num) LE_64(num)
+#      endif
+#endif
+
+
+///////////////////
+// Byte swapping //
+///////////////////
+
+#ifndef bswap16
+#      define bswap16(num) \
+               (((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8))
+#endif
+
+#ifndef bswap32
+#      define bswap32(num) \
+               ( (((uint32_t)(num) << 24)                       ) \
+               | (((uint32_t)(num) <<  8) & UINT32_C(0x00FF0000)) \
+               | (((uint32_t)(num) >>  8) & UINT32_C(0x0000FF00)) \
+               | (((uint32_t)(num) >> 24)                       ) )
+#endif
+
+#ifndef bswap64
+#      define bswap64(num) \
+               ( (((uint64_t)(num) << 56)                               ) \
+               | (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \
+               | (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \
+               | (((uint64_t)(num) <<  8) & UINT64_C(0x000000FF00000000)) \
+               | (((uint64_t)(num) >>  8) & UINT64_C(0x00000000FF000000)) \
+               | (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \
+               | (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \
+               | (((uint64_t)(num) >> 56)                               ) )
+#endif
+
+// Define conversion macros using the basic byte swapping macros.
+#ifdef WORDS_BIGENDIAN
+#      ifndef conv16be
+#              define conv16be(num) ((uint16_t)(num))
+#      endif
+#      ifndef conv32be
+#              define conv32be(num) ((uint32_t)(num))
+#      endif
+#      ifndef conv64be
+#              define conv64be(num) ((uint64_t)(num))
+#      endif
+#      ifndef conv16le
+#              define conv16le(num) bswap16(num)
+#      endif
+#      ifndef conv32le
+#              define conv32le(num) bswap32(num)
+#      endif
+#      ifndef conv64le
+#              define conv64le(num) bswap64(num)
+#      endif
+#else
+#      ifndef conv16be
+#              define conv16be(num) bswap16(num)
+#      endif
+#      ifndef conv32be
+#              define conv32be(num) bswap32(num)
+#      endif
+#      ifndef conv64be
+#              define conv64be(num) bswap64(num)
+#      endif
+#      ifndef conv16le
+#              define conv16le(num) ((uint16_t)(num))
+#      endif
+#      ifndef conv32le
+#              define conv32le(num) ((uint32_t)(num))
+#      endif
+#      ifndef conv64le
+#              define conv64le(num) ((uint64_t)(num))
+#      endif
+#endif
+
+
+//////////////////////////////
+// Aligned reads and writes //
+//////////////////////////////
+
+static inline uint16_t
+read16be(const uint8_t *buf)
+{
+       uint16_t num = *(const uint16_t *)buf;
+       return conv16be(num);
+}
+
+
+static inline uint16_t
+read16le(const uint8_t *buf)
+{
+       uint16_t num = *(const uint16_t *)buf;
+       return conv16le(num);
+}
+
+
+static inline uint32_t
+read32be(const uint8_t *buf)
+{
+       uint32_t num = *(const uint32_t *)buf;
+       return conv32be(num);
+}
+
+
+static inline uint32_t
+read32le(const uint8_t *buf)
+{
+       uint32_t num = *(const uint32_t *)buf;
+       return conv32le(num);
+}
+
+
+static inline uint64_t
+read64be(const uint8_t *buf)
+{
+       uint64_t num = *(const uint64_t *)buf;
+       return conv64be(num);
+}
+
+
+static inline uint64_t
+read64le(const uint8_t *buf)
+{
+       uint64_t num = *(const uint64_t *)buf;
+       return conv64le(num);
+}
+
+
+// NOTE: Possible byte swapping must be done in a macro to allow GCC
+// to optimize byte swapping of constants when using glibc's or *BSD's
+// byte swapping macros. The actual write is done in an inline function
+// to make type checking of the buf pointer possible similarly to readXXYe()
+// functions.
+
+#define write16be(buf, num) write16ne((buf), conv16be(num))
+#define write16le(buf, num) write16ne((buf), conv16le(num))
+#define write32be(buf, num) write32ne((buf), conv32be(num))
+#define write32le(buf, num) write32ne((buf), conv32le(num))
+#define write64be(buf, num) write64ne((buf), conv64be(num))
+#define write64le(buf, num) write64ne((buf), conv64le(num))
+
+
+static inline void
+write16ne(uint8_t *buf, uint16_t num)
+{
+       *(uint16_t *)buf = num;
+       return;
+}
+
+
+static inline void
+write32ne(uint8_t *buf, uint32_t num)
+{
+       *(uint32_t *)buf = num;
+       return;
+}
+
+
+static inline void
+write64ne(uint8_t *buf, uint64_t num)
+{
+       *(uint64_t *)buf = num;
+       return;
+}
+
+
+////////////////////////////////
+// Unaligned reads and writes //
+////////////////////////////////
+
+// NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and
+// 32-bit unaligned integer loads and stores. It's possible that 64-bit
+// unaligned access doesn't work or is slower than byte-by-byte access.
+// Since unaligned 64-bit is probably not needed as often as 16-bit or
+// 32-bit, we simply don't support 64-bit unaligned access for now.
+#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
+#      define unaligned_read16be read16be
+#      define unaligned_read16le read16le
+#      define unaligned_read32be read32be
+#      define unaligned_read32le read32le
+#      define unaligned_write16be write16be
+#      define unaligned_write16le write16le
+#      define unaligned_write32be write32be
+#      define unaligned_write32le write32le
+
+#else
+
+static inline uint16_t
+unaligned_read16be(const uint8_t *buf)
+{
+       uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
+       return num;
+}
+
+
+static inline uint16_t
+unaligned_read16le(const uint8_t *buf)
+{
+       uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
+       return num;
+}
+
+
+static inline uint32_t
+unaligned_read32be(const uint8_t *buf)
+{
+       uint32_t num = (uint32_t)buf[0] << 24;
+       num |= (uint32_t)buf[1] << 16;
+       num |= (uint32_t)buf[2] << 8;
+       num |= (uint32_t)buf[3];
+       return num;
+}
+
+
+static inline uint32_t
+unaligned_read32le(const uint8_t *buf)
+{
+       uint32_t num = (uint32_t)buf[0];
+       num |= (uint32_t)buf[1] << 8;
+       num |= (uint32_t)buf[2] << 16;
+       num |= (uint32_t)buf[3] << 24;
+       return num;
+}
+
+
+static inline void
+unaligned_write16be(uint8_t *buf, uint16_t num)
+{
+       buf[0] = (uint8_t)(num >> 8);
+       buf[1] = (uint8_t)num;
+       return;
+}
+
+
+static inline void
+unaligned_write16le(uint8_t *buf, uint16_t num)
+{
+       buf[0] = (uint8_t)num;
+       buf[1] = (uint8_t)(num >> 8);
+       return;
+}
+
+
+static inline void
+unaligned_write32be(uint8_t *buf, uint32_t num)
+{
+       buf[0] = (uint8_t)(num >> 24);
+       buf[1] = (uint8_t)(num >> 16);
+       buf[2] = (uint8_t)(num >> 8);
+       buf[3] = (uint8_t)num;
+       return;
+}
+
+
+static inline void
+unaligned_write32le(uint8_t *buf, uint32_t num)
+{
+       buf[0] = (uint8_t)num;
+       buf[1] = (uint8_t)(num >> 8);
+       buf[2] = (uint8_t)(num >> 16);
+       buf[3] = (uint8_t)(num >> 24);
+       return;
+}
+
+#endif
+
+
+static inline uint32_t
+bsr32(uint32_t n)
+{
+       // Check for ICC first, since it tends to define __GNUC__ too.
+#if defined(__INTEL_COMPILER)
+       return _bit_scan_reverse(n);
+
+#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
+       // GCC >= 3.4 has __builtin_clz(), which gives good results on
+       // multiple architectures. On x86, __builtin_clz() ^ 31U becomes
+       // either plain BSR (so the XOR gets optimized away) or LZCNT and
+       // XOR (if -march indicates that SSE4a instructions are supported).
+       return __builtin_clz(n) ^ 31U;
+
+#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+       uint32_t i;
+       __asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
+       return i;
+
+#elif defined(_MSC_VER) && _MSC_VER >= 1400
+       // MSVC isn't supported by tuklib, but since this code exists,
+       // it doesn't hurt to have it here anyway.
+       uint32_t i;
+       _BitScanReverse((DWORD *)&i, n);
+       return i;
+
+#else
+       uint32_t i = 31;
+
+       if ((n & UINT32_C(0xFFFF0000)) == 0) {
+               n <<= 16;
+               i = 15;
+       }
+
+       if ((n & UINT32_C(0xFF000000)) == 0) {
+               n <<= 8;
+               i -= 8;
+       }
+
+       if ((n & UINT32_C(0xF0000000)) == 0) {
+               n <<= 4;
+               i -= 4;
+       }
+
+       if ((n & UINT32_C(0xC0000000)) == 0) {
+               n <<= 2;
+               i -= 2;
+       }
+
+       if ((n & UINT32_C(0x80000000)) == 0)
+               --i;
+
+       return i;
+#endif
+}
+
+
+static inline uint32_t
+clz32(uint32_t n)
+{
+#if defined(__INTEL_COMPILER)
+       return _bit_scan_reverse(n) ^ 31U;
+
+#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
+       return __builtin_clz(n);
+
+#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+       uint32_t i;
+       __asm__("bsrl %1, %0\n\t"
+               "xorl $31, %0"
+               : "=r" (i) : "rm" (n));
+       return i;
+
+#elif defined(_MSC_VER) && _MSC_VER >= 1400
+       uint32_t i;
+       _BitScanReverse((DWORD *)&i, n);
+       return i ^ 31U;
+
+#else
+       uint32_t i = 0;
+
+       if ((n & UINT32_C(0xFFFF0000)) == 0) {
+               n <<= 16;
+               i = 16;
+       }
+
+       if ((n & UINT32_C(0xFF000000)) == 0) {
+               n <<= 8;
+               i += 8;
+       }
+
+       if ((n & UINT32_C(0xF0000000)) == 0) {
+               n <<= 4;
+               i += 4;
+       }
+
+       if ((n & UINT32_C(0xC0000000)) == 0) {
+               n <<= 2;
+               i += 2;
+       }
+
+       if ((n & UINT32_C(0x80000000)) == 0)
+               ++i;
+
+       return i;
+#endif
+}
+
+
+static inline uint32_t
+ctz32(uint32_t n)
+{
+#if defined(__INTEL_COMPILER)
+       return _bit_scan_forward(n);
+
+#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX
+       return __builtin_ctz(n);
+
+#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+       uint32_t i;
+       __asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
+       return i;
+
+#elif defined(_MSC_VER) && _MSC_VER >= 1400
+       uint32_t i;
+       _BitScanForward((DWORD *)&i, n);
+       return i;
+
+#else
+       uint32_t i = 0;
+
+       if ((n & UINT32_C(0x0000FFFF)) == 0) {
+               n >>= 16;
+               i = 16;
+       }
+
+       if ((n & UINT32_C(0x000000FF)) == 0) {
+               n >>= 8;
+               i += 8;
+       }
+
+       if ((n & UINT32_C(0x0000000F)) == 0) {
+               n >>= 4;
+               i += 4;
+       }
+
+       if ((n & UINT32_C(0x00000003)) == 0) {
+               n >>= 2;
+               i += 2;
+       }
+
+       if ((n & UINT32_C(0x00000001)) == 0)
+               ++i;
+
+       return i;
+#endif
+}
+
+#define bsf32 ctz32
+
+#endif